ValueError: Input 0 of layer "sequential" is incompatible with the layer: expected shape=(None, 20, 2), found shape=(None, 2, 20)
时间: 2024-01-11 13:03:58 浏览: 120
这个错误提示是因为输入的数据形状与模型期望的形状不匹配。具体来说,这个模型期望输入数据的形状是`(batch_size, window_size, num_features)`,其中`batch_size`是样本数量,`window_size`是时间窗口大小,`num_features`是每个时间步的特征数量。但是在这个错误中,发现输入的数据形状是`(batch_size, num_features, window_size)`,即`num_features`和`window_size`的维度颠倒了。
为了解决这个错误,你可以尝试将输入数据在传递给模型之前进行转置,将`num_features`和`window_size`的维度颠倒回来。具体来说,你可以使用`numpy.transpose()`函数或者`numpy.swapaxes()`函数来实现转置操作。
以下是一个示例代码,用于将输入数据进行转置:
```python
import numpy as np
# 生成正弦函数矩阵
t = np.linspace(0, 100, 1000)
x1 = np.sin(t)
x2 = np.sin(t * 2)
# 定义训练数据和标签
window_size = 20
x_train = []
y_train = []
for i in range(len(x1) - window_size):
x_train.append([x1[i:i+window_size], x2[i:i+window_size]])
if np.mean(x1[i:i+window_size]) > 0:
y_train.append(0) # 类别1
else:
y_train.append(1) # 类别2
x_train = np.array(x_train)
y_train = np.array(y_train)
# 转置输入数据
x_train = np.transpose(x_train, (0, 2, 1)) # 将最后两个维度进行转置
# 定义CNN模型
model = Sequential()
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(window_size, 2)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=50)
# 预测类别
x_test = np.array([[x1[-window_size:], x2[-window_size:]]])
x_test = np.transpose(x_test, (0, 2, 1)) # 将最后两个维度进行转置
y_pred = model.predict(x_test)
print('Predicted class:', np.round(y_pred[0][0]))
```
在这个示例代码中,我们使用`numpy.transpose()`函数将输入数据进行了转置,以适应模型的期望形状。注意,我们需要在训练数据和测试数据上都进行转置操作。
阅读全文