void init_clock(void) { UCSCTL3 = SELREF_2; // Set DCO FLL reference = REFO UCSCTL4 |= SELA_2; // Set ACLK = REFO UCSCTL0 = 0x0000; // Set lowest possible DCOx, MODx // Loop until XT1,XT2 & DCO stabilizes - In this case only DCO has to stabilize do { UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG); // Clear XT2,XT1,DCO fault flags SFRIFG1 &= ~OFIFG; // Clear fault flags } while (SFRIFG1 & OFIFG); // Test oscillator fault flag __bis_SR_register(SCG0); // Disable the FLL control loop UCSCTL1 = DCORSEL_5; // Select DCO range 16MHz operation UCSCTL2 |= 249; // Set DCO Multiplier for 8MHz // (N + 1) * FLLRef = Fdco // (249 + 1) * 32768 = 8MHz __bic_SR_register(SCG0); // Enable the FLL control loop // Worst-case settling time for the DCO when the DCO range bits have been // changed is n x 32 x 32 x f_MCLK / f_FLL_reference. See UCS chapter in 5xx // UG for optimization. // 32 x 32 x 8 MHz / 32,768 Hz = 250000 = MCLK cycles for DCO to settle __delay_cycles(250000); }

时间: 2024-02-10 09:33:40 浏览: 31
这段代码定义了一个函数`init_clock`,用于初始化MSP430芯片的时钟系统,使其工作在8MHz的频率下。 函数实现的过程如下: 首先,设置UCSCTL3寄存器的SELREF位为2,表示使用REFO作为DCO FLL的参考时钟;设置UCSCTL4寄存器的SELA位为2,表示使用REFO作为ACLK的时钟源。 然后,将UCSCTL0寄存器清零,将DCOx和MODx的值设为最小值,以便在启动时能够正常工作。 接下来,进入一个do-while循环,不断检测XT2OFFG、XT1LFOFFG和DCOFFG位,如果有任何一个标志位被置位,则表示XT2、XT1或DCO出现问题,需要清除标志位,等待时钟系统稳定。 在循环结束后,关闭FLL控制循环,将UCSCTL1寄存器的DCORSEL位设置为5,表示选择16MHz的DCO范围;将UCSCTL2寄存器设置为249,表示将DCO的倍频器设置为249,将DCO频率设置为8MHz。 最后,启动FLL控制循环,等待DCO稳定,至少需要250000个MCLK周期的时间。 函数执行完毕后,MSP430芯片的时钟系统将工作在8MHz的频率下。
相关问题

详细解释下面代码//使用内部振荡器时钟源REFO,配置ACLK为32kHz,SMCLK和MCLK为16MHz void Clock_Init() { P5SEL |= BIT2 + BIT3; // P5.2和P5.3选择XT2晶振功能 UCSCTL6 &= ~XT2OFF; // 使能XT2 UCSCTL3 |= SELREF_2; // FLL模块的参考时钟源选择REFO UCSCTL4 |= SELA_2; // ACLK=REFO,SMCLK=DCO,MCLK=DCO // 测试晶振是否产生故障失效,并清除故障失效标志位 do { UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG); // 清除XT2,XT1,DCO故障失效标志位 SFRIFG1 &= ~OFIFG; // 清除晶振故障失效中断标志位 }while(SFRIFG1 &OFIFG); // 测试晶振故障失效中断标志位 __bis_SR_register(SCG0); //禁止FLL UCSCTL1 = DCORSEL_6; //选择DCO频率范围 UCSCTL2 |= 499; // 设置DCP频率为16MHz // 计算公式:(499 + 1) * 32768 = 16MHz __bic_SR_register(SCG0); //启用FLL __delay_cycles(250000); //// 延时,待DCO工作稳定 } */

这段代码是 MSP430 单片机的时钟初始化函数。主要的功能是配置时钟源和时钟频率,使得单片机能够正常工作。 具体解释如下: 1. P5SEL |= BIT2 + BIT3; // P5.2和P5.3选择XT2晶振功能 这句代码的作用是将 P5.2 和 P5.3 的功能设置为 XT2 晶振。XT2 是一种外部晶振,用于提供高精度的时钟信号。 2. UCSCTL6 &= ~XT2OFF; // 使能XT2 这句代码的作用是使能 XT2 晶振。 3. UCSCTL3 |= SELREF_2; // FLL模块的参考时钟源选择REFO 这句代码的作用是将 FLL 模块的参考时钟源选择为 REFO。REFO 是 MSP430 单片机内部的振荡器时钟源。 4. UCSCTL4 |= SELA_2; // ACLK=REFO,SMCLK和MCLK为DCO 这句代码的作用是将 ACLK 设置为 REFO,SMCLK 和 MCLK 设置为 DCO。DCO 是 MSP430 单片机内部的数字控制振荡器,可以通过软件控制其频率。 5. do { UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG); SFRIFG1 &= ~OFIFG; }while(SFRIFG1 &OFIFG); 这段代码的作用是测试晶振是否产生故障失效,并清除故障失效标志位。如果检测到晶振失效,则需要重新初始化时钟。 6. __bis_SR_register(SCG0); //禁止FLL 这句代码的作用是禁止 FLL。FLL 是一个数字锁相环,用于调节 DCO 的频率。 7. UCSCTL1 = DCORSEL_6; //选择DCO频率范围 这句代码的作用是选择 DCO 的频率范围。DCO 有多种频率范围可供选择,这里选择的是最高频率范围。 8. UCSCTL2 |= 499; // 设置DCO频率为16MHz 这句代码的作用是设置 DCO 的频率为 16MHz。具体的计算公式为:(499 + 1) * 32768 = 16MHz。其中,32768 是 REFO 的频率,499 是用于调节 DCO 频率的参数。 9. __bic_SR_register(SCG0); //启用FLL 这句代码的作用是启用 FLL。经过上述设置后,FLL 会根据参考时钟源 REFO 和 DCO 的频率范围,自动调节 DCO 的频率,使得其稳定在 16MHz。 10. __delay_cycles(250000); // 延时,待DCO工作稳定 这句代码的作用是延时一段时间,等待 DCO 的频率稳定。在 DCO 频率改变后,需要一定的时间才能稳定下来。

#include <msp430f6638.h> void main(void) { WDTCTL = WDTPW + WDTHOLD; // Stop WDT while(BAKCTL & LOCKIO) // Unlock XT1 pins for operation BAKCTL &= ~(LOCKIO); UCSCTL6 &= ~(XT1OFF); // XT1 On UCSCTL6 |= XCAP_3; // Internal load cap // Loop until XT1 fault flag is cleared do { UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG); // Clear XT2,XT1,DCO fault flags SFRIFG1 &= ~OFIFG; // Clear fault flags }while (SFRIFG1&OFIFG); // Test oscillator fault flag P1DIR |= BIT2+BIT3; // P1.2 and P1.3 output P1SEL |= BIT2+BIT3; // P1.2 and P1.3 options select TA0CCR0 = 512-1; // PWM Period TA0CCTL1 = OUTMOD_7; // CCR1 reset/set TA0CCR1 = 384; // CCR1 PWM duty cycle TA0CCTL2 = OUTMOD_7; // CCR2 reset/set TA0CCR2 = 128; // CCR2 PWM duty cycle TA0CTL = TASSEL_1 + MC_1 + TACLR; // ACLK, up mode, clear TAR __bis_SR_register(LPM3_bits); // Enter LPM3 __no_operation(); // For debugger }

这段代码是 MSP430 微控制器的代码,用于控制 P1.2 和 P1.3 两个引脚产生 PWM 信号。其中使用了 ACLK 作为计时器时钟源,TA0CCR0 设置了 PWM 信号的周期,TA0CCTL1 和 TA0CCTL2 分别设置了 P1.2 和 P1.3 引脚产生的 PWM 信号的占空比。代码中还包括了解锁 XT1 引脚,以及处理 XT1 振荡器故障标志的部分。

相关推荐

void light_init(void) { MAP_WDT_A_holdTimer();//关闭看门狗 curADCResult = 0;//参数初始化 //配置Flash MAP_FlashCtl_setWaitState(FLASH_BANK0, 2); MAP_FlashCtl_setWaitState(FLASH_BANK1, 2); //设置DCO 为48MHz MAP_PCM_setPowerState(PCM_AM_LDO_VCORE1); //MAP_CS_setDCOCenteredFrequency(CS_DCO_FREQUENCY_48); //使能FPU,进行小数点运算 MAP_FPU_enableModule(); MAP_FPU_enableLazyStacking(); //从这里开始配置ADC MAP_ADC14_enableModule(); //时钟配置 MAP_ADC14_initModule(ADC_CLOCKSOURCE_MCLK, ADC_PREDIVIDER_1, ADC_DIVIDER_4, 0); //MAP_ADC14_initModule(ADC_CLOCKSOURCE_ACLK,0,0,0); //GPIO配置,将P5.5配置为ADC输入 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5 , GPIO_PIN5, GPIO_TERTIARY_MODULE_FUNCTION); //配置ADC存储器、通道、采样方式 MAP_ADC14_configureSingleSampleMode(ADC_MEM0, true); MAP_ADC14_configureConversionMemory(ADC_MEM0, ADC_VREFPOS_AVCC_VREFNEG_VSS, ADC_INPUT_A0, false); //配置采样定时器 MAP_ADC14_enableSampleTimer(ADC_MANUAL_ITERATION); //使能转换 MAP_ADC14_enableConversion(); MAP_ADC14_toggleConversionTrigger(); //中断配置 MAP_ADC14_enableInterrupt(ADC_INT0); MAP_Interrupt_enableInterrupt(INT_ADC14); MAP_Interrupt_enableMaster(); } void ADC14_IRQHandler(void) { uint64_t status = MAP_ADC14_getEnabledInterruptStatus(); MAP_ADC14_clearInterruptFlag(status);//清除中断标志 if (ADC_INT0 & status) { curADCResult = MAP_ADC14_getResult(ADC_MEM0);//得到ADC转结果 normalizedADCRes = (curADCResult * 3.3) / 16384;//结果转换为电压 //printf("%d\n", normalizedADCRes); //printf("%f\n", normalizedADCRes); //printf("%f\n", 3.3); //printf("%d.%d\n", ???); MAP_ADC14_toggleConversionTrigger();//手动开启ADC转换 } } 请将它改为DCO为6MHz的msp432的代码

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩