# 读取原始灰度图像 img = cv2.imread('23.png', cv2.IMREAD_GRAYSCALE) 代码 将img 缩放为1250*1023
时间: 2024-02-12 14:09:28 浏览: 73
可以使用cv2.resize()函数来对图像进行缩放,示例代码如下:
```
import cv2
# 读取原始灰度图像
img = cv2.imread('23.png', cv2.IMREAD_GRAYSCALE)
# 缩放图像
img_resized = cv2.resize(img, (1250, 1023))
# 显示缩放后的图像
cv2.imshow('Resized Image', img_resized)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,cv2.resize()函数的第一个参数是原始图像,第二个参数是需要缩放到的大小,即(1250, 1023)。如果需要保持缩放后的长宽比不变,可以使用cv2.INTER_AREA参数;如果需要放大图像,可以使用cv2.INTER_CUBIC参数;如果需要缩小图像,可以使用cv2.INTER_LINEAR参数。
相关问题
LSTM-GAN读取11*11灰度图像文件夹并将生成的每个不同图像保存 代码实现
以下是使用LSTM-GAN生成11*11灰度图像并保存的代码实现,注释中有详细的解释:
```python
import numpy as np
from tensorflow.keras.layers import Input, Dense, Reshape, LSTM, Dropout, LeakyReLU, UpSampling2D, Conv2D, Flatten
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
import os
import cv2
# 设置图像大小和通道数
img_rows = 11
img_cols = 11
channels = 1
# 定义生成器模型
def build_generator():
model = Sequential()
# 添加LSTM层
model.add(LSTM(128, input_shape=(100,)))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(11*11*1, activation='tanh'))
model.add(Reshape((11, 11, 1)))
return model
# 定义判别器模型
def build_discriminator():
model = Sequential()
# 添加卷积层
model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=(11, 11, 1), padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
return model
# 定义LSTM-GAN模型
def build_lstm_gan(generator, discriminator):
# 冻结判别器模型
discriminator.trainable = False
# 定义输入和噪声
gan_input = Input(shape=(100,))
x = generator(gan_input)
gan_output = discriminator(x)
# 定义LSTM-GAN模型
gan = Model(inputs=gan_input, outputs=gan_output)
return gan
# 加载数据集
def load_data():
data = []
# 读取灰度图像文件夹
for filename in os.listdir('gray_images'):
img = cv2.imread(os.path.join('gray_images', filename), cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (img_rows, img_cols))
img = img.astype('float32') / 127.5 - 1.
img = np.expand_dims(img, axis=2)
data.append(img)
return np.array(data)
# 训练LSTM-GAN模型
def train():
# 加载数据集
X_train = load_data()
# 编译判别器模型
discriminator = build_discriminator()
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy'])
# 编译生成器模型
generator = build_generator()
# 编译LSTM-GAN模型
lstm_gan = build_lstm_gan(generator, discriminator)
lstm_gan.compile(loss='binary_crossentropy', optimizer=Adam())
# 定义噪声维度
noise_dim = 100
# 定义训练参数
epochs = 100
batch_size = 128
save_interval = 10
# 定义标签
real_labels = np.ones((batch_size, 1))
fake_labels = np.zeros((batch_size, 1))
for epoch in range(epochs):
# 随机选择一批样本
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_imgs = X_train[idx]
# 生成噪声
noise = np.random.normal(0, 1, (batch_size, noise_dim))
# 生成假图像
fake_imgs = generator.predict(noise)
# 训练判别器
d_loss_real = discriminator.train_on_batch(real_imgs, real_labels)
d_loss_fake = discriminator.train_on_batch(fake_imgs, fake_labels)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# 训练生成器
g_loss = lstm_gan.train_on_batch(noise, real_labels)
# 打印训练进度
print("Epoch %d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# 保存生成器模型
if epoch % save_interval == 0:
generator.save('generator_%d.h5' % epoch)
# 生成并保存图像
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, noise_dim))
gen_imgs = generator.predict(noise)
gen_imgs = 0.5 * gen_imgs + 0.5
for i in range(r * c):
cv2.imwrite("images/%d.png" % i, gen_imgs[i,:,:,0] * 255)
```
代码实现了以下功能:
1. 定义了生成器模型、判别器模型和LSTM-GAN模型。
2. 加载11*11的灰度图像文件夹,并将所有图像统一缩放为11*11大小的灰度图像。
3. 训练LSTM-GAN模型并保存生成器模型,每10个epoch保存一次,并生成一些生成的图像并保存在images文件夹中。
对给定的两幅图像(灰度、真彩)使用变换矩阵进行坐标变换(同时缩放、旋转),显示 变换后图像及信息数据。 要求:1) 旋转:以图像左下角为圆心点,逆时针旋转 30 度 2) 缩放:sx=0.9,sy=1.8 3) 将变换后的图像写出在文件中,并通过此文件获取图像信息与原图像进行比 较。
好的,这里提供一个Python的OpenCV实现方案,同样可以实现对给定灰度图像和真彩图像进行变换,包括旋转、缩放和输出变换后的图像信息。
首先,我们需要读取灰度图和真彩图像:
```python
import cv2
gray_img = cv2.imread('gray_img.png', cv2.IMREAD_GRAYSCALE)
color_img = cv2.imread('color_img.png')
```
然后,我们可以使用`cv2.getRotationMatrix2D()`函数来计算旋转和缩放矩阵,并使用`cv2.warpAffine()`函数来进行变换。需要注意的是,旋转中心点是图像左下角,因此需要对图像的原点进行一定的调整。
```python
# 计算旋转和缩放矩阵
center = (0, gray_img.shape[0])
angle = -30
scale = (0.9, 1.8)
M = cv2.getRotationMatrix2D(center, angle, scale)
# 对灰度图像进行坐标变换
transformed_gray = cv2.warpAffine(gray_img, M, (gray_img.shape[1], gray_img.shape[0]))
# 对真彩图像进行坐标变换
transformed_color = cv2.warpAffine(color_img, M, (color_img.shape[1], color_img.shape[0]))
# 显示变换后的图像
cv2.imshow('Transformed Gray Image', transformed_gray)
cv2.imshow('Transformed Color Image', transformed_color)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 将变换后的图像写入文件
cv2.imwrite('transformed_gray.png', transformed_gray)
cv2.imwrite('transformed_color.png', transformed_color)
# 输出图像信息
print('Gray Image Shape:', gray_img.shape)
print('Color Image Shape:', color_img.shape)
print('Transformed Gray Image Shape:', transformed_gray.shape)
print('Transformed Color Image Shape:', transformed_color.shape)
```
在代码中,我们首先计算了旋转和缩放矩阵,并使用`cv2.warpAffine()`函数对灰度图像和真彩图像进行坐标变换。最后,我们将变换后的图像写入文件,并输出图像的信息。
需要注意的是,这里的变换中心点是图像左下角,因此需要对图像的原点进行一定的调整。如果需要以图像中心点为旋转中心,可以将`center`的值设置为`(gray_img.shape[1] / 2, gray_img.shape[0] / 2)`。
希望以上内容能够帮助到你!
阅读全文