基于pytorch的LSTM-GAN读取11*11灰度图像文件夹并保存模型,后加载模型,生成的每个不同图像保存 代码实现
时间: 2024-03-10 18:47:03 浏览: 110
好的,我会尽力为您解答。首先,您需要定义一个基于PyTorch的LSTM-GAN模型。以下是一个简单的实现示例:
``` python
import torch
import torch.nn as nn
class Generator(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(Generator, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x, _ = self.lstm(x)
x = self.fc(x[:, -1, :])
return x
class Discriminator(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(Discriminator, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x, _ = self.lstm(x)
x = self.fc(x[:, -1, :])
return x
```
接下来,您需要编写一个数据加载器来读取11*11灰度图像文件夹。以下是一个简单的实现示例:
``` python
import os
import cv2
import numpy as np
from torch.utils.data import Dataset, DataLoader
class ImageDataset(Dataset):
def __init__(self, root_dir):
self.root_dir = root_dir
self.image_files = os.listdir(root_dir)
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_path = os.path.join(self.root_dir, self.image_files[idx])
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (11, 11))
img = img / 255.0
img = np.expand_dims(img, axis=0)
img = np.expand_dims(img, axis=0)
return img.astype(np.float32)
```
现在,您可以使用上述定义的模型和数据加载器来训练您的LSTM-GAN模型并保存模型。以下是一个简单的实现示例:
``` python
# 设置超参数
input_dim = 1
hidden_dim = 32
output_dim = 1
lr = 0.001
epochs = 100
# 定义模型和优化器
G = Generator(input_dim, hidden_dim, output_dim)
D = Discriminator(input_dim, hidden_dim, output_dim)
G_optimizer = torch.optim.Adam(G.parameters(), lr=lr)
D_optimizer = torch.optim.Adam(D.parameters(), lr=lr)
# 定义损失函数
criterion = nn.BCEWithLogitsLoss()
# 加载数据集
dataset = ImageDataset('your_data_folder')
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# 训练模型
for epoch in range(epochs):
for i, real_images in enumerate(dataloader):
# 训练判别器
D_optimizer.zero_grad()
real_labels = torch.ones(real_images.size(0), 1)
fake_labels = torch.zeros(real_images.size(0), 1)
real_outputs = D(real_images)
real_loss = criterion(real_outputs, real_labels)
z = torch.randn(real_images.size(0), 1, input_dim)
fake_images = G(z)
fake_outputs = D(fake_images.detach())
fake_loss = criterion(fake_outputs, fake_labels)
D_loss = real_loss + fake_loss
D_loss.backward()
D_optimizer.step()
# 训练生成器
G_optimizer.zero_grad()
z = torch.randn(real_images.size(0), 1, input_dim)
fake_images = G(z)
fake_outputs = D(fake_images)
G_loss = criterion(fake_outputs, real_labels)
G_loss.backward()
G_optimizer.step()
# 打印损失
print('Epoch [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}'.format(epoch+1, epochs, D_loss.item(), G_loss.item()))
# 保存模型
torch.save(G.state_dict(), 'G.pth')
torch.save(D.state_dict(), 'D.pth')
```
最后,您可以加载保存的模型并使用生成器生成每个不同的图像并保存。以下是一个简单的实现示例:
``` python
# 加载模型
G = Generator(input_dim, hidden_dim, output_dim)
G.load_state_dict(torch.load('G.pth'))
# 生成图像并保存
for i in range(10):
z = torch.randn(1, 1, input_dim)
fake_image = G(z).squeeze().detach().numpy()
fake_image = (fake_image * 255.0).astype(np.uint8)
cv2.imwrite('fake_image_{}.png'.format(i+1), fake_image)
```
希望这可以帮助您完成您的任务。
阅读全文