Error in svm(Status ~ ., data = train_df, probability = TRUE, kernel = "linear") : could not find function "svm"

时间: 2024-03-10 22:48:19 浏览: 18
这个错误信息表明你在R中调用`svm()`函数时,R找不到该函数,这可能是因为你没有正确加载`e1071`包。你可以尝试使用以下代码加载该包: ``` library(e1071) ``` 如果你仍然遇到相同的错误,请确认你已经正确安装了`e1071`包。你可以使用以下代码安装该包: ``` install.packages("e1071") ``` 如果你的R版本较老,可能会发生这种情况。你可以尝试更新R和RStudio到最新版本,或者使用以下代码加载`svm`函数: ``` library(kernlab) ``` 这个包中也包含了支持向量机的实现。使用这个包的`ksvm()`函数可以实现支持向量机。但是,注意这个包与`e1071`包的实现可能略有不同,所以你需要重新阅读文档并调整代码。
相关问题

r语言unexpected symbol在"svm_model <- svm(diabetes ~ ., data =_data"

"unexpected symbol"错误通常是由于代码中存在语法错误引起的。在你提供的代码中,可能是由于_data变量没有被正确定义或赋值,导致了这个错误。 请检查以下几点: 1. 确保_data变量已经被正确定义或赋值。可以使用以下代码检查: ```R class(_data) ``` 2. 确保你在代码中正确使用了_data变量。在你的代码中,应该使用正确的数据集名称来替换_data变量。 3. 确保你在代码中使用了正确的语法和标点符号。在你提供的代码中,有一个可能引起错误的地方是逗号后面的下划线字符,应该将其替换为正确的数据集名称。 ```R svm_model <- svm(diabetes ~ ., data = diabetes_data) ``` 如果以上三点都没有问题,你可以尝试重新编写你的代码,或者在R语言社区中寻求帮助。

# extract dataset x1_x2_train = data_train[:, :-1] t_train = data_train[:, 2] # x1_x2_test = data_test[:, :-1] t_test = data_test[:, 2] if choice == 1: model = svm_bi.SVM(svm_bi.linear_kernel) elif choice == 2: #model = SVM(polynormal_kernel) model = svm_bi.SVM(svm_bi.gaussian_kernel) #model = svm_bi.SVM(svm_bi.sigmoid_kernel) elif choice == 3: model3 = svm_multi.SVM_Multi() elif choice == 4: from sklearn.svm import SVC model4 = SVC(kernel='sigmoid') else: exit() support_vec = None if choice == 4: model4.fit(x1_x2_train, t_train) pred_train = model4.predict(x1_x2_train) pred_test = model4.predict(x1_x2_test) elif choice == 1 or choice == 2: support_vec = model.train(data_train) # shape(N,1) [pred_t] pred_train = model(x1_x2_train) pred_test = model(x1_x2_test) elif choice == 3: support_vec = model3.train(data_train) pred_train = model3(x1_x2_train) pred_test = model3(x1_x2_test) else: support_vec = None pred_train = None pred_train = None,这段代码的含义是什么

这段代码主要是根据用户选择的 SVM 算法类型,建立相应的 SVM 模型,并使用训练集数据进行训练,并对训练集和测试集进行预测。 首先,根据选择的 SVM 类型,判断需要使用哪个 SVM 模型进行训练。如果选择了线性 SVM(choice=1),则使用 svm_bi.SVM(svm_bi.linear_kernel) 建立模型;如果选择了非线性 SVM(choice=2),则可以选择使用 svm_bi.SVM(svm_bi.gaussian_kernel) 或 svm_bi.SVM(svm_bi.sigmoid_kernel) 建立模型;如果选择了多分类 SVM(choice=3),则使用 svm_multi.SVM_Multi() 建立模型;如果选择了 sklearn SVM(choice=4),则使用 sklearn.svm.SVC(kernel='sigmoid') 建立模型。 然后,根据选择的 SVM 模型类型,使用训练集数据进行训练,并对训练集和测试集进行预测。如果选择的是 sklearn SVM 模型,则使用 model4.fit(x1_x2_train, t_train) 对模型进行训练,并使用 model4.predict(x1_x2_train) 和 model4.predict(x1_x2_test) 对训练集和测试集进行预测;如果选择的是 SVM(linear、gaussian 或 sigmoid kernel)模型,则使用 model.train(data_train) 对模型进行训练,并使用 model(x1_x2_train) 和 model(x1_x2_test) 对训练集和测试集进行预测。如果选择的是多分类 SVM 模型,则使用 model3.train(data_train) 对模型进行训练,并使用 model3(x1_x2_train) 和 model3(x1_x2_test) 对训练集和测试集进行预测。 最后,根据选择的 SVM 模型类型,返回预测结果 pred_train 和 pred_test,以及支持向量 support_vec。如果选择的是 SVM(linear、gaussian 或 sigmoid kernel)模型或多分类 SVM 模型,返回的支持向量 support_vec 非空,否则为空。

相关推荐

import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.svm import SVCfrom sklearn.metrics import accuracy_score, confusion_matriximport matplotlib.pyplot as pltimport xlrd# 加载数据集并进行预处理def load_data(filename): data = pd.read_excel(filename) data.dropna(inplace=True) X = data.drop('label', axis=1) X = (X - X.mean()) / X.std() y = data['label'] return X, y# 训练SVM分类器def train_svm(X_train, y_train, kernel='rbf', C=1, gamma=0.1): clf = SVC(kernel=kernel, C=C, gamma=gamma) clf.fit(X_train, y_train) return clf# 预测新的excel文件并输出预测结果excel、精度和混淆矩阵图def predict_svm(clf, X_test, y_test, filename): y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) # 输出预测结果excel data = pd.read_excel(filename) data['predicted_label'] = pd.Series(y_pred, index=data.index) data.to_excel('predicted_result.xlsx', index=False) # 绘制混淆矩阵图 plt.imshow(cm, cmap=plt.cm.Blues) plt.title('Confusion matrix') plt.colorbar() tick_marks = np.arange(len(set(y_test))) plt.xticks(tick_marks, sorted(set(y_test)), rotation=45) plt.yticks(tick_marks, sorted(set(y_test))) plt.xlabel('Predicted Label') plt.ylabel('True Label') plt.show() return accuracy# 加载数据集并划分训练集和验证集data = pd.read_excel('data.xlsx')data.dropna(inplace=True)X = data.drop('label', axis=1)X = (X - X.mean()) / X.std()y = data['label']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练SVM分类器clf = train_svm(X_train, y_train)# 预测新的excel文件accuracy = predict_svm(clf, X_test, y_test, 'test_data.xlsx')# 输出精度print('Accuracy:', accuracy)改进,预测新的结果输出在新表中

def svmModel(x_train,x_test,y_train,y_test,type): if type=='rbf': svmmodel=svm.SVC(C=15,kernel='rbf',gamma=10,decision_function_shape='ovr') else: svmmodel=svm.SVC(C=0.1,kernel='linear',decision_function_shape='ovr') svmmodel.fit(x_train,y_train.ravel()) print('SVM模型:',svmmodel) train_accscore=svmmodel.score(x_train,y_train) test_accscore=svmmodel.score(x_test,y_test) n_support_numbers=svmmodel.n_support_ return svmmodel,train_accscore,test_accscore,n_support_numbers if __name__=='__main__': iris_feature='花萼长度','花萼宽度','花瓣长度','花瓣宽度' path="D:\data\iris(1).data" data=pd.read_csv(path,header=None) x,y=data[[0,1]],pd.Categorical(data[4]).codes x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=3,train_size=0.6) type='linear' svmmodel,train_accscore,test_accscore,n_support_numbers=svmModel(x_train,x_test,y_train,y_test,type) print('训练集准确率:',train_accscore) print('测试机准确率:',test_accscore) print('支持向量的数目:',n_support_numbers) print('-' * 50) if __name__=='__main__': path='D:/data/iris1-100.data' data=pd.read_csv(path,header=None) x=data[list(range(2,4))] y=data[4].replace(['Iris-versicolor','Iris-virginica'],[0,1]) svmmodel_param=(('linear',0.1),('rbf',1,0.1),('rbf',5,5),('rbf',10,10)) for i, param in enumerate(svmmodel_param): svmmodel,title,accuracyscore=svmModel(x,y,param) y_predict=svmmodel.predict(x) print(title) print('准确率:',accuracyscore) print('支持向量的数目:',svmmodel.n_support_)

最新推荐

recommend-type

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rarJava开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。