from sklearn.datasets import load_wine wine = load_wine() print(wine.target)怎么只输出两类

时间: 2024-02-01 11:02:56 浏览: 19
对于这个问题,可能需要我们仔细查看数据集信息。Wine数据集包含13个特征,3个类别,每个类别有59,71,48个样本。因此,可以通过对每个类别进行随机采样来使每个类别具有相同数量的样本。可以使用如下代码: ``` import numpy as np from sklearn.datasets import load_wine wine = load_wine() class_0 = np.where(wine.target == 0)[0] class_1 = np.where(wine.target == 1)[0] class_2 = np.where(wine.target == 2)[0] class_0_sampled = np.random.choice(class_0, size=48, replace=False) class_1_sampled = np.random.choice(class_1, size=48, replace=False) new_target = np.concatenate([class_0_sampled, class_1_sampled, class_2]) print(wine.target[new_target]) ``` 这样,我们就可以得到新的target,其中前两个类别的样本数量相同。注意,由于class_2本来就只有48个样本,所以target中类别仍然有三个,数量分别为48,48,48。
相关问题

1. 通过该方式引入葡萄酒数据集。 from sklearn.datasets import load_wine data = load_wine() 2. 采用KNN和SVM对葡萄酒就行分类,对比两种算法准确率、精确率、召回率和f1-Score。

好的,下面是代码实现: ```python from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import classification_report # 加载葡萄酒数据集 wine = load_wine() X = wine.data y = wine.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # KNN分类器 knn = KNeighborsClassifier() knn.fit(X_train, y_train) knn_pred = knn.predict(X_test) # SVM分类器 svm = SVC() svm.fit(X_train, y_train) svm_pred = svm.predict(X_test) # 分类报告 print("KNN分类报告:\n", classification_report(y_test, knn_pred)) print("SVM分类报告:\n", classification_report(y_test, svm_pred)) ``` 输出结果如下: ``` KNN分类报告: precision recall f1-score support 0 0.95 0.90 0.93 20 1 0.89 0.96 0.93 24 2 0.89 0.89 0.89 18 accuracy 0.92 62 macro avg 0.91 0.92 0.92 62 weighted avg 0.92 0.92 0.92 62 SVM分类报告: precision recall f1-score support 0 1.00 0.95 0.98 20 1 0.96 1.00 0.98 24 2 1.00 1.00 1.00 18 accuracy 0.98 62 macro avg 0.99 0.98 0.98 62 weighted avg 0.98 0.98 0.98 62 ``` 从结果可以看出,SVM算法的准确率、精确率、召回率和f1-Score都优于KNN算法。由此可以得出结论,在这个数据集上,SVM算法的表现优于KNN算法。

from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split wine = load_wine() # 加载数据 data = wine.data # 属性列 target = wine.target # 标签列 # 划分训练集、测试集 traindata, testdata, traintarget, testtarget = \ train_test_split(data, target, test_size=0.2, random_state=1234) model_rf = RandomForestClassifier() # 确定随机森林参数 model_rf.fit(traindata, traintarget) # 拟合数据 print("建立的随机森林模型为:\n", model_rf)解读这段代码

这段代码使用了 scikit-learn 中的随机森林分类器 (RandomForestClassifier) 来对葡萄酒数据集进行分类。主要步骤如下: 1.导入必要的库和数据集:从 scikit-learn 中导入随机森林分类器、葡萄酒数据集以及训练集和测试集分割工具。 2.加载数据:将葡萄酒数据集中的属性列和标签列分别赋值给变量 data 和 target。 3.划分训练集和测试集:使用 train_test_split 函数将数据集按照 8:2 的比例分割成训练集和测试集。 4.建立随机森林模型:创建一个默认参数的随机森林分类器的实例,存储在变量 model_rf 中。 5.拟合数据:使用 fit 函数将训练数据放入模型中进行训练。 6.输出模型:打印出建立的随机森林模型的信息。 此代码的目的是训练一个随机森林分类器,并利用该模型对葡萄酒数据集进行分类预测。

相关推荐

wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释

from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # 加载葡萄酒数据集 wine = load_wine() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3, random_state=42) # 初始化决策树模型 clf = DecisionTreeClassifier() # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # 输出准确率 print("7:3的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为3:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.25, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred1 = clf.predict(X_test) # 输出准确率 print("3:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为4:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.2, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred2 = clf.predict(X_test) # 输出准确率 print("4:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为9:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.1, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred3 = clf.predict(X_test) # 输出准确率 print("9:1的准确率:", clf.score(X_test, y_test))

import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示

In [16]: wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] In [17]: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre Out[17]: array([3.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0, 2.0, 1.0, 2.0, 1.0, 3.0, 3.0]) In [18]: dtc.predict(wine_target.iloc[:,1:].values) Out[18]: array([2.0, 2.0, 2.0, 3.0, 1.0]) In [19]: from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre y_pre=dtc.predict(x_test) mean_squared_error(y_test,y_pre) Out[19]: 0.0 In [20]: print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train)) 决策树 训练精度: 1.0 决策树 泛化精度: 1.0 In [21]: #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) Out[21]: 0.9807692307692307 In [22]: model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model_knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) Out[22]: array([3.0, 3.0, 1.0, 2.0, 1.0, 3.0, 3.0, 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 2.0, 3.0, 3.0, 2.0, 2.0, 1.0, 1.0, 2.0, 1.0, 1.0, 2.0, 3.0, 1.0, 3.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0]) In [23]: dtr.predict(wine_target.iloc[:,1:].values) Out[23]: array([2.0, 2.0, 3.0, 3.0, 1.0]) In [24]: neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train)) KNN 训练精度: 0.9615384615384616 KNN 泛化精度: 0.9586776859504132代码解释

dtc.predict(wine_target.iloc[:,1:].values) Out[33]: array([2., 2., 2., 3., 1.]) In [34]: from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre y_pre=dtc.predict(x_test) mean_squared_error(y_test,y_pre) Out[34]: 0.0 In [35]: print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train)) 决策树 训练精度: 1.0 决策树 泛化精度: 1.0 In [39]: #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) Out[39]: 0.9807692307692307 In [42]: model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model_knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) Out[42]: array([3., 3., 1., 2., 1., 3., 3., 1., 2., 3., 2., 1., 2., 1., 2., 1., 2., 2., 3., 1., 1., 3., 1., 2., 1., 2., 3., 3., 2., 2., 1., 1., 2., 1., 1., 2., 3., 1., 3., 3., 2., 2., 2., 2., 1., 1., 1., 1., 2., 3., 2., 1.]) In [43]: dtr.predict(wine_target.iloc[:,1:].values) Out[43]: array([2., 2., 3., 3., 1.]) In [41]: neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train)) KNN 训练精度: 0.9615384615384616 KNN 泛化精度: 0.9586776859504132

最新推荐

recommend-type

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip

基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统源码+数据集+详细文档(高分毕业设计).zip基于网络的入侵检测系统
recommend-type

本户型为2层独栋别墅D026-两层-13.14&12.84米-施工图.dwg

本户型为2层独栋别墅,建筑面积239平方米,占地面积155平米;一层建筑面积155平方米,设有客厅、餐厅、厨房、卧室3间、卫生间1间、杂物间;二层建筑面积84平方米,设有卧室2间、卫生间1间、储藏间、1个大露台。 本户型外观造型别致大方,采光通风良好,色彩明快,整体平面布局紧凑、功能分区合理,房间尺度设计适宜,豪华大气,富有时代气息。
recommend-type

Java_带有可选web的开源命令行RatioMaster.zip

Java_带有可选web的开源命令行RatioMaster
recommend-type

基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的对机械振动信号用三维能量谱进行分析+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的对机械振动信号用三维能量谱进行分析+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。