In [16]: wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] In [17]: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre Out[17]: array([3.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0, 2.0, 1.0, 2.0, 1.0, 3.0, 3.0]) In [18]: dtc.predict(wine_target.iloc[:,1:].values) Out[18]: array([2.0, 2.0, 2.0, 3.0, 1.0]) In [19]: from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre y_pre=dtc.predict(x_test) mean_squared_error(y_test,y_pre) Out[19]: 0.0 In [20]: print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train)) 决策树 训练精度: 1.0 决策树 泛化精度: 1.0 In [21]: #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) Out[21]: 0.9807692307692307 In [22]: model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model_knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) Out[22]: array([3.0, 3.0, 1.0, 2.0, 1.0, 3.0, 3.0, 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 3.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 2.0, 3.0, 3.0, 2.0, 2.0, 1.0, 1.0, 2.0, 1.0, 1.0, 2.0, 3.0, 1.0, 3.0, 3.0, 2.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0]) In [23]: dtr.predict(wine_target.iloc[:,1:].values) Out[23]: array([2.0, 2.0, 3.0, 3.0, 1.0]) In [24]: neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train)) KNN 训练精度: 0.9615384615384616 KNN 泛化精度: 0.9586776859504132代码解释

时间: 2024-04-01 18:36:37 浏览: 18
这段代码主要是进行机器学习的分类任务,使用了决策树和K近邻算法。首先将数据分为训练集和测试集,然后使用DecisionTreeClassifier和KNeighborsClassifier分别建立决策树和K近邻分类模型,并使用训练数据拟合模型。决策树模型使用熵评价纯度。使用模型对训练集和测试集进行评估,计算预测准确率。最后使用模型对新的数据进行预测。使用mean_squared_error计算决策树模型的均方误差。K近邻算法中,n_neighbors表示选择的最近邻个数。最后输出模型的训练精度和泛化精度。
相关问题

wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:]

这段代码用于将原始数据集data分为特征数据集wine_data和目标数据集wine_target。其中,wine_data包含了原始数据集除了最后5行以外的所有数据,wine_target包含了原始数据集最后5行的数据。这样做的目的是在数据集上进行训练和测试。通常我们会将数据集按照一定比例划分为训练集和测试集,其中训练集用于模型的训练和参数的调整,测试集用于评估模型的性能。在这里,我们将最后5行数据单独拿出来作为测试集,其余数据作为训练集。需要注意的是,在将数据集划分为训练集和测试集时,应该保证训练集和测试集中的数据分布相似,以避免模型在测试集上表现不佳的情况。

wine_data=pd.read_csv(r'C:\Users\20778\Desktop\batch1(xin).csv') data=wine_data.iloc[:,1:] target=wine_data.iloc[:,0] data1=wine_data.iloc[:,1:333] data2=wine_data.iloc[:,333:] y_known = data1=wine_data.iloc[:,1:333] y_unknown = data2=wine_data.iloc[:,333:] x_train, x_test, y_train, y_test = train_test_split(data1, y_known, test_size=0.2, random_state=1) model = Sequential() model.add(Dense(64, activation='relu', input_dim=x_train.shape[1])) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=300)错误在哪

这段代码有一个错误:在定义y_known时,代码重复赋值了y_known和data1,导致y_known的取值与实际意图不符。下面是修改后的代码: ``` wine_data = pd.read_csv(r'C:\Users\20778\Desktop\batch1(xin).csv') data = wine_data.iloc[:,1:] target = wine_data.iloc[:,0] data1 = wine_data.iloc[:,1:333] data2 = wine_data.iloc[:,333:] y_known = wine_data.iloc[:,0] # 修改此行代码 y_unknown = data2 x_train, x_test, y_train, y_test = train_test_split(data1, y_known, test_size=0.2, random_state=1) model = Sequential() model.add(Dense(64, activation='relu', input_dim=x_train.shape[1])) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=300) ``` 修改后的代码将y_known的取值设为全部数据的第0列,即目标变量列。

相关推荐

wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释

dtc.predict(wine_target.iloc[:,1:].values) Out[33]: array([2., 2., 2., 3., 1.]) In [34]: from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre y_pre=dtc.predict(x_test) mean_squared_error(y_test,y_pre) Out[34]: 0.0 In [35]: print("决策树 训练精度:",dtc.score(x_test,y_test)) print("决策树 泛化精度:",dtc.score(x_train,y_train)) 决策树 训练精度: 1.0 决策树 泛化精度: 1.0 In [39]: #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) Out[39]: 0.9807692307692307 In [42]: model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model_knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) Out[42]: array([3., 3., 1., 2., 1., 3., 3., 1., 2., 3., 2., 1., 2., 1., 2., 1., 2., 2., 3., 1., 1., 3., 1., 2., 1., 2., 3., 3., 2., 2., 1., 1., 2., 1., 1., 2., 3., 1., 3., 3., 2., 2., 2., 2., 1., 1., 1., 1., 2., 3., 2., 1.]) In [43]: dtr.predict(wine_target.iloc[:,1:].values) Out[43]: array([2., 2., 3., 3., 1.]) In [41]: neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:",knn.score(x_test,y_test)) print("KNN 泛化精度:",knn.score(x_train,y_train)) KNN 训练精度: 0.9615384615384616 KNN 泛化精度: 0.9586776859504132

TypeError Traceback (most recent call last) D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance) 3628 try: -> 3629 return self._engine.get_loc(casted_key) 3630 except KeyError as err: D:\Anaconda\lib\site-packages\pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc() D:\Anaconda\lib\site-packages\pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc() TypeError: '(slice(None, None, None), 0)' is an invalid key During handling of the above exception, another exception occurred: InvalidIndexError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_5316\790738290.py in <module> ----> 1 target=wine_data[:,0] 2 data=wine_data[:,1:] D:\Anaconda\lib\site-packages\pandas\core\frame.py in __getitem__(self, key) 3503 if self.columns.nlevels > 1: 3504 return self._getitem_multilevel(key) -> 3505 indexer = self.columns.get_loc(key) 3506 if is_integer(indexer): 3507 indexer = [indexer] D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance) 3634 # InvalidIndexError. Otherwise we fall through and re-raise 3635 # the TypeError. -> 3636 self._check_indexing_error(key) 3637 raise 3638 D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py in _check_indexing_error(self, key) 5649 # if key is not a scalar, directly raise an error (the code below 5650 # would convert to numpy arrays and raise later any way) - GH29926 -> 5651 raise InvalidIndexError(key) 5652 5653 @cache_readonly InvalidIndexError: (slice(None, None, None), 0)

最新推荐

recommend-type

2层设计-2.4G RF高频信号收发模块硬件(cadence原理图+PADS PCB图+BOM)文件.zip

2层设计-2.4G RF高频信号收发模块硬件(cadence原理图+PADS PCB图+BOM)文件,可供学习及设计参考。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

mac上和window原生一样的历史剪切板工具有什么

好的,我明白了您的要求。关于您的问题,为使Mac与Windows的历史剪切板功能类似,可以使用第三方工具"CopyClip"、"Alfred"、"Clipboard Manager"等。这些工具可以记录您复制到剪切板的所有内容,而不仅仅是最后一次复制。同时,它们还可以进行搜索和过滤,以便您更快地找到需要的内容。希望这能回答您的问题。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。