wine_data=pd.read_csv(r'C:\Users\20778\Desktop\batch1(xin).csv') data=wine_data.iloc[:,1:] target=wine_data.iloc[:,0] data1=wine_data.iloc[:,1:333] data2=wine_data.iloc[:,333:] y_known = data1=wine_data.iloc[:,1:333] y_unknown = data2=wine_data.iloc[:,333:] x_train, x_test, y_train, y_test = train_test_split(data1, y_known, test_size=0.2, random_state=1) model = Sequential() model.add(Dense(64, activation='relu', input_dim=x_train.shape[1])) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=300)
时间: 2024-01-15 21:05:44 浏览: 62
这段代码是对读取的csv文件进行了一些数据预处理和机器学习模型的训练。首先,将读取的数据分为三个部分:全部数据(data)、目标变量(target)、已知目标变量(y_known)和未知目标变量(y_unknown)。其中,已知目标变量和未知目标变量分别是全部数据的前333列和后面的列。接着,将已知目标变量和全部数据的前333列作为训练集,使用train_test_split函数将其划分为80%的训练集和20%的测试集。然后,使用Keras库中的Sequential函数创建一个神经网络模型,该模型包含两个隐藏层和一个输出层,每个隐藏层包含64个神经元。其中,第一个隐藏层的输入维度为训练集的列数。在模型的编译过程中,使用adam优化器和binary_crossentropy损失函数,并记录模型的准确率。最后,使用fit函数对模型进行300个epoch的训练。
相关问题
import numpy as np import pandas as pd import matplotlib as plt from model import MLP import torch.optim as optim import torch import torch.nn as nn import argparse parser = argparse.ArgumentParser() parser.add_argument('--batchSize', type=int, default=4, help='input batch size') parser.add_argument('--nEpochs', type=int, default=100, help='number of epochs to train for') parser.add_argument('--LR', type=float, default=0.001, help='learning rate for net') opt = parser.parse_args() # 数据集预处理 df = pd.read_csv("C:/Users/shen/Desktop/housing.csv", delim_whitespace=True) # Turn into Numpy arrays arr = df.to_numpy(dtype='float') # Split the features and the labels X = arr[:, :-1] y = np.expand_dims(arr[:, -1], 1) ones = np.ones((X.shape[0], 1)) X_new = np.hstack((ones, X)) # Split the dataset into train set and test set indices = np.random.permutation(X_new.shape[0]) train_indices, test_indices = indices[:int(0.9*X_new.shape[0])], indices[int(0.9*X_new.shape[0]):] X_train, X_test = X_new[train_indices, :], X_new[test_indices, :] y_train, y_test = y[train_indices, :], y[test_indices, :] model = MLP() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) model.train() optim_model = optim.Adam(model.parameters(), lr=opt.LR)#Adam优化器 # for epoch in range(opt.nEpochs): # # START CODE HERE # # END CODE HERE # torch.save(model.state_dict(),"C:/Users/shen/Desktop/checkpoint/net_weight.pth")帮我解释这里面每行代码的意思
这段代码主要是在导入一些Python的库(如numpy,pandas,matplotlib等),以及导入一个叫做MLP的模型。同时还使用了一些PyTorch的库(如optim,nn等)。接下来使用argparse库创建了一个命令行参数解析器,可以通过命令行来指定一些参数(比如batchSize,nEpochs和LR)。最后通过parse_args()函数解析这些参数。
将冒号后面的代码改写成一个nn.module类:data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(50, input_shape=(1, look_back), return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=6, batch_size=1, verbose=2) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])
以下是将代码改写为nn.module类的示例:
```python
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super(LSTMModel, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
# 读取数据
data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030')
df = data1.fillna(method='ffill')
data = df.values.reshape(-1, 1)
# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
data = scaler.fit_transform(data)
# 划分数据集
train_size = int(len(data) * 0.8)
test_size = len(data) - train_size
train, test = data[0:train_size, :], data[train_size:len(data), :]
# 创建数据集
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 30
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))
# 模型训练
input_dim = 1
hidden_dim = 50
output_dim = 1
num_layers = 2
model = LSTMModel(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 6
for epoch in range(num_epochs):
outputs = model(trainX)
optimizer.zero_grad()
loss = criterion(outputs, trainY)
loss.backward()
optimizer.step()
if epoch % 1 == 0:
print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))
# 预测结果
trainPredict = model(trainX)
testPredict = model(testX)
trainPredict = scaler.inverse_transform(trainPredict.detach().numpy())
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict.detach().numpy())
testY = scaler.inverse_transform([testY])
```
阅读全文