这段代码的作用是什么wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) dtc=DecisionTreeClassifier(criterion='entropy') dtc.fit(x_train,y_train) y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values)
时间: 2023-12-24 18:28:23 浏览: 99
pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
5星 · 资源好评率100%
这段代码的作用是对葡萄酒数据集进行决策树分类器建模,并对测试集进行预测,最后对新数据进行分类预测。
首先,将数据集分为特征数据和目标数据,其中特征数据为除第一列(通常为编号或标签)外的所有列,目标数据为第一列。
然后,使用train_test_split函数将数据集划分为训练集和测试集,其中测试集占30%。
接着,使用DecisionTreeClassifier函数进行决策树分类器的建模,其中criterion='entropy'表示使用信息熵作为划分标准。
然后,使用fit函数对训练集进行拟合,使用predict函数对测试集进行预测,将预测结果赋值给y_pre。
最后,使用predict函数对新数据(即wine_target数据集)进行分类预测,将预测结果输出。
阅读全文