信赖域算法matlab程序
时间: 2023-10-06 22:08:26 浏览: 157
信赖域算法matlab实现
以下是一份MATLAB实现的信赖域算法程序:
```matlab
function [xopt, fopt, iter] = trust_region(f, g, H, x0, delta, tol, itmax)
% TRUST_REGION Trust region algorithm for unconstrained optimization
% [XOPT, FOPT, ITER] = TRUST_REGION(F, G, H, X0, DELTA, TOL, ITMAX)
% finds a local minimizer of the function F using the trust region
% method with initial point X0, trust region radius DELTA, and tolerance
% TOL. The maximum number of iterations is ITMAX. The gradient of F
% is given by G and the Hessian matrix of F is given by H.
%
% XOPT is the optimal point, FOPT is the optimal function value, and
% ITER is the number of iterations until convergence.
% Initialization
x = x0;
fval = f(x);
gval = g(x);
Hval = H(x);
iter = 0;
% Main loop
while norm(gval) > tol && iter < itmax
% Solve trust region subproblem
p = trust_region_subproblem(gval, Hval, delta);
xnew = x + p;
fnew = f(xnew);
actual_reduction = fval - fnew;
predicted_reduction = -gval' * p - 0.5 * p' * Hval * p;
rho = actual_reduction / predicted_reduction;
% Update trust region radius
if rho < 0.25
delta = 0.25 * delta;
elseif rho > 0.75 && norm(p) == delta
delta = min(2 * delta, 1e10);
end
% Update x, fval, gval, Hval
if rho > 0
x = xnew;
fval = fnew;
gval = g(x);
Hval = H(x);
end
iter = iter + 1;
end
xopt = x;
fopt = fval;
end
function p = trust_region_subproblem(g, H, delta)
% TRUST_REGION_SUBPROBLEM Solve the trust region subproblem
% P = TRUST_REGION_SUBPROBLEM(G, H, DELTA) solves the trust region
% subproblem for a given gradient G, Hessian matrix H, and trust region
% radius DELTA. The solution P is the minimizer of the quadratic model
% m(p) = g'p + 0.5 * p'Hp subject to ||p|| <= DELTA.
% Solve unconstrained subproblem
p = -H \ g;
% Calculate norm of p
pnorm = norm(p);
% Check if p satisfies trust region constraint
if pnorm <= delta
return;
end
% Solve constrained subproblem
p = -((g' * p) / (p' * H * p)) * p + sqrt(delta^2 - pnorm^2) * (p / pnorm);
end
```
在此程序中,我们首先定义了`trust_region`函数,该函数使用信赖域算法来最小化给定的函数。输入参数包括函数本身,函数的梯度和黑塞矩阵,初始点,信赖域半径,收敛容差和最大迭代次数。输出参数是最优点,最优函数值和迭代次数。
该程序的主要部分是`while`循环,该循环持续进行直到梯度的范数小于收敛容差或达到最大迭代次数。在每次迭代中,我们首先解决信赖域子问题,然后根据实际和预测的减少率更新信赖域半径。最后,我们更新$x$,$f$值,梯度和黑塞矩阵,并增加迭代计数器。
信赖域子问题由`trust_region_subproblem`函数解决。该函数首先求解无约束子问题,然后检查$p$是否满足信赖域约束。如果不是,则求解有约束子问题。
此程序仅为信赖域算法的一个基本实现。根据应用程序的具体要求,可能需要进行修改和优化。
阅读全文