#拆分数据集为训练集0.8和测试集0.2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
时间: 2023-07-20 10:41:36 浏览: 99
这段代码使用 `train_test_split` 函数将数据集 `X` 和 `y` 拆分为训练集和测试集,其中 `test_size=0.2` 表示测试集占总样本的比例为 0.2,`random_state=0` 表示随机数种子为 0,确保每次运行代码得到的结果相同。
该函数的返回值是一个元组,包含四个数组,分别是 `X_train`、`X_test`、`y_train` 和 `y_test`,其中 `X_train` 和 `y_train` 是训练集的特征和标签,`X_test` 和 `y_test` 是测试集的特征和标签。
这里 `train_test_split` 函数是从 `sklearn.model_selection` 模块中导入的,需要先安装 scikit-learn 库。
相关问题
x_train, x_test, y_train, y_test = train_test_split(x,y,train_size = 0.8,random_state=42)s什么意思
这行代码是用来进行数据集的拆分,将数据集分为训练集和测试集。其中,x表示输入特征,y表示目标变量。
train_test_split是sklearn库中的一个函数,用于将数据集划分为训练集和测试集。它的参数包括:x,y(输入特征和目标变量),train_size(训练集所占比例,默认为0.75),random_state(随机种子,用于确保每次划分的结果相同,默认为None)。
在这行代码中,x和y是您的输入特征和目标变量,train_size=0.8表示将80%的数据分配给训练集,random_state=42是设置随机种子为42,以确保每次划分结果相同。
拆分后,x_train和y_train是训练集的输入特征和目标变量,x_test和y_test是测试集的输入特征和目标变量。您可以在接下来的代码中使用这些变量进行模型训练和测试。
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # 读取训练集和测试集数据 train_data = pd.read_csv(r'C:\ADULT\Titanic\train.csv') test_data = pd.read_csv(r'C:\ADULT\Titanic\test.csv') # 统计训练集和测试集缺失值数目 print(train_data.isnull().sum()) print(test_data.isnull().sum()) # 处理 Age, Fare 和 Embarked 缺失值 most_lists = ['Age', 'Fare', 'Embarked'] for col in most_lists: train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) # 拆分 X, Y 数据并将分类变量 one-hot 编码 y_train_data = train_data['Survived'] features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Embarked'] X_train_data = pd.get_dummies(train_data[features]) X_test_data = pd.get_dummies(test_data[features]) # 合并训练集 Y 和 X 数据,并创建乘客信息分类变量 train_data_selected = pd.concat([y_train_data, X_train_data], axis=1) print(train_data_selected) cate_features = ['Pclass', 'SibSp', 'Parch', 'Sex', 'Embarked', 'Age_category', 'Fare_category'] train_data['Age_category'] = pd.cut(train_data.Fare, bins=range(0, 100, 10)).astype(str) train_data['Fare_category'] = pd.cut(train_data.Fare, bins=list(range(-20, 110, 20)) + [800]).astype(str) print(train_data) # 统计各分类变量的分布并作出可视化呈现 plt.figure(figsize=(18, 16)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for i, cate_feature in enumerate(cate_features): plt.subplot(7, 2, 2 * i + 1) sns.histplot(x=cate_feature, data=train_data, stat="density") plt.xlabel(cate_feature) plt.ylabel('Density') plt.subplot(7, 2, 2 * i + 2) sns.lineplot(x=cate_feature, y='Survived', data=train_data) plt.xlabel(cate_feature) plt.ylabel('Survived') plt.show() # 绘制点状的相关系数热图 plt.figure(figsize=(12, 8)) sns.heatmap(train_data_selected.corr(), vmin=-1, vmax=1, annot=True) plt.show() sourceRow = 891 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.head() # 保存结果 output.to_csv('gender_submission.csv', index=False) print(output) train_X, test_X, train_y, test_y = train_test_split(X_train_data, y_train_data, train_size=0.8, random_state=42) print("随机森林分类结果") y_pred_train1 = train_data.predict(train_X) y_pred_test1 = train_data.predict(test_X) accuracy_train1 = accuracy_score(train_y, y_pred_train1) accuracy_test1 = accuracy_score(test_y, y_pred_test1) print("训练集——随机森林分类器准确率为:", accuracy_train1) print("测试集——随机森林分类器准确率为:", accuracy_train1)
在你的代码中,你正在尝试从 `train_data` 对象上调用一个名为 "predict" 的方法,而 `train_data` 实际上是一个 DataFrame 对象,该对象并没有 "predict" 方法。你应该使用你之前定义的随机森林分类器对象 `RandomForestClassifier` 来进行预测。请将以下代码:
```
y_pred_train1 = train_data.predict(train_X)
y_pred_test1 = train_data.predict(test_X)
```
更改为:
```
# 定义随机森林分类器对象
rfc = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42)
# 在训练数据上拟合分类器
rfc.fit(train_X, train_y)
# 在训练集和测试集上进行预测
y_pred_train1 = rfc.predict(train_X)
y_pred_test1 = rfc.predict(test_X)
```
这将使用你之前定义的随机森林分类器对象 `rfc` 来进行预测。同时,你需要使用 `rfc.fit(train_X, train_y)` 在训练数据上拟合分类器,然后使用 `rfc.predict(train_X)` 和 `rfc.predict(test_X)` 在训练集和测试集上进行预测。
阅读全文