时频域自适应协方差极化分析方法及附有中文注释的matlab示例代码
时间: 2023-09-04 09:09:34 浏览: 89
时频域自适应协方差极化分析方法是一种用于分析极化雷达信号的方法,其基本原理是通过对信号的时频特性进行分析,得到信号的极化特性,以实现对目标的识别和分类。
以下是附有中文注释的Matlab示例代码:
```matlab
clc;
clear all;
close all;
%% 读取数据
load('poldata.mat');
data1 = data1.';
data2 = data2.';
%% 参数设置
Nfft = 256; % FFT点数
winlen = 31; % 窗口长度
hop = 1; % 窗口移动步长
L = 16; % 极化矩阵维数
K = 3; % 自适应阶数
mu = 0.05; % 自适应因子
R = zeros(L, L); % 极化矩阵
%% 计算自适应协方差矩阵
for i = 1:hop:length(data1)-winlen
x1 = data1(i:i+winlen-1);
x2 = data2(i:i+winlen-1);
X = [x1; x2];
R = (1-mu)*R + mu*X*X';
end
%% 特征值分解
[E, D] = eig(R);
D = diag(D);
[D, ind] = sort(D, 'descend');
E = E(:, ind);
%% 计算极化矩阵
R1 = E(:, 1:K)*diag(D(1:K))*E(:, 1:K)';
R2 = E(:, K+1:L)*diag(D(K+1:L))*E(:, K+1:L)';
R1 = R1./(trace(R1)); % 归一化
R2 = R2./(trace(R2));
R = R1-R2;
%% 极化矩阵分解
[U, S, V] = svd(R);
U1 = U(:, 1:2);
U2 = U(:, 3:4);
%% 计算极化参数
for i = 1:hop:length(data1)-winlen
x1 = data1(i:i+winlen-1);
x2 = data2(i:i+winlen-1);
X = [x1; x2];
Y = U1'*X;
Z = U2'*X;
p = (abs(Y(1,:)).^2-abs(Y(2,:)).^2)./(abs(Y(1,:)).^2+abs(Y(2,:)).^2);
s = (abs(Z(1,:)).^2-abs(Z(2,:)).^2)./(abs(Z(1,:)).^2+abs(Z(2,:)).^2);
Pol(:,i) = [p; s];
end
%% 展示结果
figure;
subplot(211);
imagesc(abs(data1)); axis xy; colormap(gray);
title('极化雷达信号1');
subplot(212);
imagesc(abs(data2)); axis xy; colormap(gray);
title('极化雷达信号2');
figure;
subplot(211);
plot(Pol(1,:));
title('线偏振参数p');
subplot(212);
plot(Pol(2,:));
title('圆偏振参数s');
```
阅读全文