axial deeplab
时间: 2023-10-05 10:10:35 浏览: 82
Axial-DeepLab是一种用于图像分割任务的神经网络模型。它通过在特征提取阶段引入轴注意力模块,来提高模型的分割性能。该模型可以自适应地学习每个像素在不同方向上的语义信息,从而更好地捕捉图像中的结构信息。Axial-DeepLab在Cityscapes和ADE20K等数据集上取得了优异的分割结果,成为当前最先进的图像分割模型之一。
相关问题
Axial-DeepLab
Axial-DeepLab is a deep learning architecture for semantic segmentation tasks that was introduced in 2019. It is based on the popular DeepLab architecture, which uses atrous convolution (also known as dilated convolution) to capture multi-scale contextual information for improved segmentation accuracy.
Axial-DeepLab extends DeepLab by incorporating axial attention modules, which enable the network to focus on relevant features in the axial (i.e., spatial) dimensions of the input image. This allows the network to better handle objects with elongated or thin structures, such as roads, trees, and poles.
Axial-DeepLab also incorporates a multi-scale fusion module that combines features from different scales to improve the accuracy of the segmentation. Additionally, it uses a depth-wise separable convolutional block to reduce the number of parameters and improve computational efficiency.
Overall, Axial-DeepLab achieves state-of-the-art performance on several benchmark datasets for semantic segmentation, including PASCAL VOC and Cityscapes.
axial attention
Axial Attention(轴向注意力)是一种注意力机制,通常由行注意力(row-attention)和列注意力(column-attention)组合使用。它在图像处理中被广泛应用。轴向注意力的使用方法如下所示:
```
from axial_attention import AxialAttention
img = torch.randn(1, 3, 256, 256)
attn = AxialAttention(dim=3)
```
其中,`dim`参数表示嵌入维度。轴向注意力的主要思想是在图像的垂直和水平方向上分别进行自我注意力计算,这样可以将计算复杂度从O(2*H*W)降低到O(H*W)。
阅读全文