写出Helen人脸数据集生成人脸分割的python代码
时间: 2023-12-15 16:51:29 浏览: 95
首先需要安装以下库:
- numpy
- cv2
- os
- tensorflow
- keras
然后可以按照以下步骤进行操作:
1. 下载Helen人脸数据集,并解压缩到指定目录下。
2. 在代码中导入必要的库:
```python
import numpy as np
import cv2
import os
import tensorflow as tf
from keras.models import Model, load_model
```
3. 加载已经训练好的分割模型:
```python
model = load_model('path/to/model.h5')
```
4. 定义分割函数,输入人脸图像,输出分割结果:
```python
def segment_face(img):
# resize to 256x256
img_resize = cv2.resize(img, (256, 256))
# convert to float and normalize
img_resize = img_resize.astype('float32') / 255.0
# expand dimensions for model input
img_expand = np.expand_dims(img_resize, axis=0)
# predict segmentation
seg = model.predict(img_expand)
# threshold output
seg = (seg > 0.5).astype('uint8')
# resize output to original size
seg_resize = cv2.resize(seg[0], (img.shape[1], img.shape[0]))
return seg_resize
```
5. 遍历Helen数据集中所有的人脸图像,对每个图像进行分割:
```python
data_dir = 'path/to/helen/dataset'
save_dir = 'path/to/save/segmentation'
# loop over all image directories in data directory
for dir_name in os.listdir(data_dir):
if not os.path.isdir(os.path.join(data_dir, dir_name)):
continue
# create directory for segmentation results
seg_dir = os.path.join(save_dir, dir_name)
os.makedirs(seg_dir, exist_ok=True)
# loop over all images in image directory
for img_name in os.listdir(os.path.join(data_dir, dir_name)):
if not img_name.endswith('.jpg'):
continue
# read image
img = cv2.imread(os.path.join(data_dir, dir_name, img_name))
# segment face
seg = segment_face(img)
# save segmentation result
seg_name = img_name.replace('.jpg', '_seg.jpg')
cv2.imwrite(os.path.join(seg_dir, seg_name), seg)
```
这样就可以生成Helen数据集中所有人脸图像的分割结果,并保存到指定目录下。
阅读全文