在pytorch环境中,使用mobilenetv2为主干网络的deeplabv3plus模型添加SE教程
时间: 2024-05-08 19:17:40 浏览: 162
1. 安装必要的库和模块
在使用SE模块之前,需要安装必要的库和模块,包括pytorch、torchvision和numpy等。可以使用pip或conda来安装。
```python
!pip install torch torchvision numpy
```
2. 定义SE模块
SE模块包括两个部分:squeeze和excitation。squeeze部分是一个全局平均池化层,用于将特征图压缩成一个数值,excitation部分是一个全连接层,用于学习特征图的重要性权重。
```python
import torch.nn as nn
class SEModule(nn.Module):
def __init__(self, channels, reduction=16):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channels // reduction, channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
```
3. 修改deeplabv3plus模型
在deeplabv3plus模型中,需要修改主干网络部分,将每个卷积层后添加一个SE模块。
```python
import torchvision.models as models
class DeepLabV3Plus(nn.Module):
def __init__(self, n_classes=21):
super(DeepLabV3Plus, self).__init__()
self.mobilenetv2 = models.mobilenet_v2(pretrained=True).features
self.se_module1 = SEModule(24)
self.se_module2 = SEModule(32)
self.se_module3 = SEModule(96)
self.se_module4 = SEModule(320)
self.aspp = ASPP(320, [12, 24, 36])
self.decoder = Decoder(n_classes)
def forward(self, x):
x_size = x.size()
h, w = x_size[2], x_size[3]
x = self.mobilenetv2(x)
x = self.se_module1(x)
x = self.mobilenetv2[3:6](x)
x = self.se_module2(x)
x = self.mobilenetv2[6](x)
x = self.se_module3(x)
x = self.mobilenetv2[7](x)
x = self.se_module4(x)
x = self.aspp(x)
x = self.decoder(x, h, w)
x = F.interpolate(x, size=x_size[2:], mode='bilinear', align_corners=False)
return x
```
4. 模型训练和测试
使用修改后的模型进行训练和测试,可以使用与原模型相同的训练和测试代码。
```python
model = DeepLabV3Plus(n_classes=21)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
with torch.no_grad():
for i, (inputs, labels) in enumerate(test_loader):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
# do something with preds
```
阅读全文