sklearn的PCA是基于奇异值分解(SVD)协方差矩阵实现的,尝试理解并解释SVD的基本原理
时间: 2024-04-04 12:31:49 浏览: 80
matlab.rar_SVD coding in matlab_svd video matlab_分块pca_分块奇异值_更新P
奇异值分解(SVD)是一种矩阵分解方法,常用于数据降维、信号处理、图像压缩和推荐系统等领域。SVD将一个矩阵分解为三个矩阵的乘积,即A=U*S*V^T,其中A为m*n的矩阵,U为m*m的正交矩阵,S为m*n的对角矩阵,V^T为n*n的正交矩阵,T表示矩阵的转置。SVD的基本原理如下:
1. 对于任意一个m*n的矩阵A,A^T * A和A * A^T是对称的半正定矩阵。
2. 对于任意一个对称的半正定矩阵,都可以进行特征值分解,得到特征值和特征向量,特征向量正交归一化。
3. 对于一个m*n的矩阵A,可以对A^T * A和A * A^T进行特征值分解,得到特征向量和特征值。然后将特征值按照大小排序,对应的特征向量也按照相同的顺序排序。
4. 将特征值按照大小依次排列成一个对角矩阵S,特征向量按照对应的顺序组成正交矩阵U和V。
5. 将矩阵A进行奇异值分解,即A=U*S*V^T。
SVD分解的结果可以用于数据降维,将原始数据投影到特征向量构成的子空间中,从而实现降维。在sklearn中,PCA算法就是基于SVD实现的,PCA通过使用SVD分解协方差矩阵,得到特征向量和特征值,从而实现数据降维。PCA可以有效地去除数据中的噪声和冗余信息,提高数据的表达能力和模型的准确性。
阅读全文