给出用VGG16分析JAFFE数据集的人脸表情分析代码和运行结果
时间: 2024-05-09 08:19:14 浏览: 96
人脸表情识别数据集 JAFFE
5星 · 资源好评率100%
由于缺乏 JAFFE 数据集,我们无法提供直接运行的代码和结果。但是,我们可以提供以下示例代码,您可以自己下载 JAFFE 数据集并进行测试。
示例代码:
1. 导入必要的库
```
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras import applications
from tensorflow.keras.optimizers import Adam
```
2. 加载数据集
```
train_dir = 'jaffe/train'
test_dir = 'jaffe/test'
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
```
3. 加载预训练的 VGG16 模型
```
vgg16 = applications.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
```
4. 停止一些层的训练
```
for layer in vgg16.layers[:-4]:
layer.trainable = False
```
5. 构建模型
```
model = Sequential()
model.add(vgg16)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
model.summary()
```
6. 编译和训练模型
```
model.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples//train_generator.batch_size,
epochs=50,
validation_data=test_generator,
validation_steps=test_generator.samples//test_generator.batch_size)
```
7. 分析训练结果
```
import matplotlib.pyplot as plt
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'b', label='Training accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
```
运行结果:
训练过程中,将看到类似以下输出:
```
Epoch 1/50
15/15 [==============================] - 8s 532ms/step - loss: 1.9611 - accuracy: 0.1641 - val_loss: 1.8715 - val_accuracy: 0.1875
Epoch 2/50
15/15 [==============================] - 7s 493ms/step - loss: 1.8781 - accuracy: 0.2193 - val_loss: 1.7585 - val_accuracy: 0.2708
Epoch 3/50
15/15 [==============================] - 7s 491ms/step - loss: 1.7656 - accuracy: 0.2926 - val_loss: 1.6399 - val_accuracy: 0.3646
...
```
训练完成后,可以通过上述代码中的 `plot` 函数来可视化训练过程和结果。
阅读全文