Mathematica 如何 求出 函数F1[s_] := (s^2 - 4)/(s^4 + 2*s^3 - 3*s^2 + 2*s + 1) 和F2[s_] := 5*s*(s^2 + 4*s + 5)/(s^3 + 5*s^2 + 16*s + 30)的零点和极点,并将零点和极点画出来
时间: 2024-02-29 15:52:10 浏览: 102
您可以使用Mathematica中的函数`Solve`和`NSolve`来求出F1和F2的零点和极点,分别如下:
```
z1 = Solve[(s^2 - 4)/(s^4 + 2*s^3 - 3*s^2 + 2*s + 1) == 0, s]
p1 = Solve[s^4 + 2*s^3 - 3*s^2 + 2*s + 1 == 0, s]
z2 = NSolve[5*s*(s^2 + 4*s + 5)/(s^3 + 5*s^2 + 16*s + 30) == 0, s]
p2 = Solve[s^3 + 5*s^2 + 16*s + 30 == 0, s]
```
然后,您可以将得到的零点和极点用`ListPlot`函数画出来,代码如下:
```
ListPlot[{{Re[s], Im[s]} /. z1, {Re[s], Im[s]} /. p1, {Re[s], Im[s]} /. z2, {Re[s], Im[s]} /. p2},
PlotStyle -> {Blue, Red, Green, Orange},
PlotMarkers -> {{"●", 10}, {"●", 10}, {"●", 10}, {"●", 10}},
PlotLegends -> {"F1零点", "F1极点", "F2零点", "F2极点"}]
```
其中,`PlotStyle`和`PlotMarkers`用于设置不同符号的颜色和形状,`PlotLegends`用于设置图例。
相关问题
Mathematica 如何 求出 函数F1[s_] := (s^2 - 4)/(s^4 + 2*s^3 - 3*s^2 + 2*s + 1) 和F2[s_] := 5*s*(s^2 + 4*s + 5)/(s^3 + 5*s^2 + 16*s + 30)画出其零点和极点分布图
您可以使用`ContourPlot`函数和`ReIm`函数将F1和F2的零点和极点分布画出来,代码如下:
```
F1[s_] := (s^2 - 4)/(s^4 + 2*s^3 - 3*s^2 + 2*s + 1)
F2[s_] := 5*s*(s^2 + 4*s + 5)/(s^3 + 5*s^2 + 16*s + 30)
ContourPlot[{ReIm[F1[s]][[1]] == 0, ReIm[F1[s]][[2]] == 0, ReIm[F2[s]][[1]] == 0, ReIm[F2[s]][[2]] == 0},
{s, -10, 10}, {t, -10, 10}, ContourStyle -> {Blue, Red, Green, Orange},
ContourLabels -> All, FrameLabel -> {"Re(s)", "Im(s)"}, PlotLegends -> {"F1零点", "F1极点", "F2零点", "F2极点"}]
```
其中,`ReIm`函数用于将符号分离出来,`ContourPlot`函数用于画出等值线图,`ContourStyle`用于设置不同符号的颜色,`ContourLabels`用于显示标签,`FrameLabel`用于设置坐标轴标签,`PlotLegends`用于设置图例。
mathematica如何求信号f1[t_] := DiracDelta[t]; f2[t_] := UnitStep[t]; f3[t_] := Sin[t]*UnitStep[t]; f4[t_] := UnitStep[t] - UnitStep[t - 2];的拉普拉斯变换,画出并比较其变换域的图形差别,尝试理清楚各函数关系。
在 Mathematica 中,可以使用 LaplaceTransform 函数来求解信号的拉普拉斯变换,使用 InverseLaplaceTransform 函数来求解拉普拉斯变换的逆变换。
下面是求解信号的拉普拉斯变换的代码:
```mathematica
f1[t_] := DiracDelta[t];
f2[t_] := UnitStep[t];
f3[t_] := Sin[t]*UnitStep[t];
f4[t_] := UnitStep[t] - UnitStep[t - 2];
LaplaceTransform[f1[t], t, s]
LaplaceTransform[f2[t], t, s]
LaplaceTransform[f3[t], t, s]
LaplaceTransform[f4[t], t, s]
```
运行结果为:
```
1
1/s
1/(s^2 + 1)
(1 - E^(-2 s))/s
```
可以看到,f1[t] 的拉普拉斯变换为常数 1,f2[t] 的拉普拉斯变换为 1/s,f3[t] 的拉普拉斯变换为 1/(s^2 + 1),f4[t] 的拉普拉斯变换为 (1 - E^(-2 s))/s。
下面是画出变换域图形并比较差别的代码:
```mathematica
Plot[{1, 1/s, 1/(s^2 + 1), (1 - E^(-2 s))/s}, {s, -5, 5},
PlotStyle -> {Blue, Red, Green, Purple},
PlotLegends -> {"f1", "f2", "f3", "f4"},
AxesLabel -> {"s", "F(s)"}]
```
运行结果为:

可以看到,不同的信号的拉普拉斯变换在变换域上有着不同的表现形式。其中,f1[t] 的拉普拉斯变换在变换域上为常数 1,f2[t] 的拉普拉斯变换在变换域上为 1/s,f3[t] 的拉普拉斯变换在变换域上为 1/(s^2 + 1),f4[t] 的拉普拉斯变换在变换域上为 (1 - e^(-2s))/s。
阅读全文
相关推荐
















