for of 和for in优缺点
时间: 2023-07-12 16:55:43 浏览: 164
`for...in` 和 `for...of` 都是 JavaScript 中用于循环遍历对象和数组的语句,但它们之间有一些区别。
`for...in` 循环遍历对象的可枚举属性,包括原型链上的属性。主要用于遍历对象属性,不适用于遍历数组。以下是 `for...in` 的一些优点和缺点:
优点:
- 可以遍历对象的所有可枚举属性,包括原型链上的属性。
- 在遍历对象时,可以通过 `hasOwnProperty()` 方法来排除原型链上的属性。
缺点:
- 在遍历数组时,也会遍历数组的原型链上的属性,这可能会导致意料之外的结果。
- 遍历顺序是不确定的。
- `for...in` 是基于对象属性的遍历方式,不适合遍历数组。
`for...of` 循环用于遍历可迭代对象(如数组、字符串、Set、Map 等),它遍历的是对象的元素,而不是属性。以下是 `for...of` 的一些优点和缺点:
优点:
- 用于遍历数组、字符串、Set、Map 等可迭代对象,可以遍历对象的元素。
- 遍历顺序是确定的。
- 不需要通过索引访问数组元素。
缺点:
- 不能遍历对象的属性。
- 不能遍历普通对象,只能遍历可迭代对象。
- `for...of` 循环不能修改元素值,如果需要修改元素值,需要使用 `for` 循环或 `Array.prototype.forEach()` 方法。
总之,`for...in` 循环适合遍历对象属性,而 `for...of` 循环适合遍历数组、字符串、Set、Map 等可迭代对象的元素。
相关问题
For macroscopically anisotropic media in which the variations in the phase stiffness tensor are small, formal solutions to the boundary-value problem have been developed in the form of perturbation series (Dederichs and Zeller, 1973; Gubernatis and Krumhansl, 1975 ; Willis, 1981). Due to the nature of the integral operator, one must contend with conditionally convergent integrals. One approach to this problem is to carry out a “renormalization” procedure which amounts to identifying physically what the conditionally convergent terms ought to contribute and replacing them by convergent terms that make this contribution (McCoy, 1979). For the special case of macroscopically isotropic media, the first few terms of this perturbation expansion have been explicitly given in terms of certain statistical correlation functions for both three-dimensional media (Beran and Molyneux, 1966 ; Milton and Phan-Thien, 1982) and two-dimensional media (Silnutzer, 1972 ; Milton, 1982). A drawback of all of these classical perturbation expansions is that they are only valid for media in which the moduli of the phases are nearly the same, albeit applicable for arbitrary volume fractions. In this paper we develop new, exact perturbation expansions for the effective stiffness tensor of macroscopically anisotropic composite media consisting of two isotropic phases by introducing an integral equation for the so-called “cavity” strain field. The expansions are not formal but rather the nth-order tensor coefficients are given explicitly in terms of integrals over products of certain tensor fields and a determinant involving n-point statistical correlation functions that render the integrals absolutely convergent in the infinite-volume limit. Thus, no renormalization analysis is required because the procedure used to solve the integral equation systematically leads to absolutely convergent integrals. Another useful feature of the expansions is that they converge rapidly for a class of dispersions for all volume fractions, even when the phase moduli differ significantly.
针对宏观各向异性介质,其中相位刚度张量的变化很小,边值问题的形式解已经通过摄动级数的形式得到了发展(Dederichs和Zeller,1973年;Gubernatis和Krumhansl,1975年;Willis,1981年)。由于积分算子的性质,必须处理条件收敛积分。解决这个问题的一种方法是进行“重整化”程序,即识别物理上条件收敛的项应该做出的贡献,并用能够产生这种贡献的收敛项替换它们(McCoy,1979年)。对于宏观各向同性介质的特殊情况,这个摄动展开的前几项已经明确给出了三维介质(Beran和Molyneux,1966年;Milton和Phan-Thien,1982年)和二维介质(Silnutzer,1972年;Milton,1982年)的某些统计相关函数的表达式。所有这些经典摄动展开的缺点在于它们仅适用于相位模量几乎相同的介质,尽管适用于任意的体积分数。在本文中,我们通过引入所谓的“腔体”应变场的积分方程,为由两个各向同性相组成的宏观各向异性复合介质的有效刚度张量开发了新的精确摄动展开。这些展开不是形式上的,而是第n阶张量系数用一些张量场和涉及n点统计相关函数的行列式的积分显式给出,这些统计相关函数使得积分在无限体积极限下绝对收敛。因此,不需要重整化分析,因为用于解决积分方程的程序系统地导致绝对收敛积分。展开的另一个有用特性是,它们在所有体积分数的某些分散类别中都快速收敛,即使相位模量差异很大。
The main limitation of layer-3 networking is that there is no built-in isolation mechanism comparable to the VLANs in layer-2 networks. Furthermore, the hierarchical nature of IP addresses means that an instance is on the same subnet as its physical host, making migration out of the subnet difficult. For these reasons, network virtualization needs to use IP encapsulation and software at the end hosts. This is for isolation and the separation of the addressing in the virtual layer from the addressing in the physical layer. Other potential disadvantages of layer-3 networking include the need to design an IP addressing scheme rather than relying on the switches to keep track of the MAC addresses automatically, and to configure the interior gateway routing protocol in the switches.
第三层网络的主要限制是没有内建的与第二层网络中的VLAN相媲美的隔离机制。此外,IP地址的分层结构意味着实例和其物理主机位于同一个子网中,使得迁移到子网之外变得困难。因此,网络虚拟化需要在终端主机上使用IP封装和软件来实现隔离,并将虚拟层中的寻址与物理层中的寻址分离。第三层网络的其他潜在缺点包括需要设计一个IP寻址方案,而不是依靠交换机自动跟踪MAC地址,并需要在交换机上配置内部网关路由协议。
阅读全文