GAN的matlab代码
时间: 2023-05-26 22:05:18 浏览: 167
MATLAB实现的生成对抗网络InfoGAN-内含数据集和结果文件.zip
由于GAN是一种深度学习算法,其实现需要大量计算资源和数据集,因此建议使用基于Python的深度学习框架(如TensorFlow、PyTorch)实现GAN。以下是一个基于PyTorch实现GAN的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# Discriminator Network
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(1, 64, 4, 2, 1)
self.conv2 = nn.Conv2d(64, 128, 4, 2, 1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, 4, 2, 1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, 4, 2, 1)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1, 4, 1, 0)
def forward(self, x):
x = torch.nn.functional.leaky_relu(self.conv1(x), 0.2, inplace=True)
x = torch.nn.functional.leaky_relu(self.bn2(self.conv2(x)), 0.2, inplace=True)
x = torch.nn.functional.leaky_relu(self.bn3(self.conv3(x)), 0.2, inplace=True)
x = torch.nn.functional.leaky_relu(self.bn4(self.conv4(x)), 0.2, inplace=True)
x = torch.sigmoid(self.conv5(x))
return x
# Generator Network
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.conv1 = nn.ConvTranspose2d(100, 512, 4, 1, 0)
self.bn1 = nn.BatchNorm2d(512)
self.conv2 = nn.ConvTranspose2d(512, 256, 4, 2, 1)
self.bn2 = nn.BatchNorm2d(256)
self.conv3 = nn.ConvTranspose2d(256, 128, 4, 2, 1)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.ConvTranspose2d(128, 64, 4, 2, 1)
self.bn4 = nn.BatchNorm2d(64)
self.conv5 = nn.ConvTranspose2d(64, 1, 4, 2, 1)
def forward(self, x):
x = torch.nn.functional.relu(self.bn1(self.conv1(x)))
x = torch.nn.functional.relu(self.bn2(self.conv2(x)))
x = torch.nn.functional.relu(self.bn3(self.conv3(x)))
x = torch.nn.functional.relu(self.bn4(self.conv4(x)))
x = torch.tanh(self.conv5(x))
return x
# Training
def train(discriminator, generator, dataloader, device, epochs=25, lr=0.0002, d_steps=1, g_steps=1):
criterion = nn.BCELoss()
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr)
g_optimizer = optim.Adam(generator.parameters(), lr=lr)
fixed_noise = torch.randn(64, 100, 1, 1, device=device)
for epoch in range(epochs):
for i, (real_images, _) in enumerate(dataloader):
real_images = real_images.to(device)
batch_size = real_images.size(0)
for j in range(d_steps):
# Train Discriminator
d_optimizer.zero_grad()
# Real images
real_labels = torch.full((batch_size,), 1, device=device)
d_real_output = discriminator(real_images).view(-1)
d_real_loss = criterion(d_real_output, real_labels)
# Fake images
noise = torch.randn(batch_size, 100, 1, 1, device=device)
fake_images = generator(noise)
fake_labels = torch.full((batch_size,), 0, device=device)
d_fake_output = discriminator(fake_images.detach()).view(-1)
d_fake_loss = criterion(d_fake_output, fake_labels)
# Compute total loss and update parameters
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
d_optimizer.step()
for j in range(g_steps):
# Train Generator
g_optimizer.zero_grad()
noise = torch.randn(batch_size, 100, 1, 1, device=device)
fake_labels = torch.full((batch_size,), 1, device=device)
g_output = generator(noise)
d_output = discriminator(g_output).view(-1)
g_loss = criterion(d_output, fake_labels)
g_loss.backward()
g_optimizer.step()
if i % 100 == 0:
print(f"Epoch {epoch}, Batch {i}: D Loss = {d_loss.item()}, G Loss = {g_loss.item()}")
with torch.no_grad():
fake_images = generator(fixed_noise)
fake_images = fake_images.detach().cpu()
save_image(fake_images, f"epoch{epoch}_batch{i}.png", normalize=True)
```
阅读全文