GANmatlab代码
时间: 2023-07-02 16:22:35 浏览: 181
步态matlab代码-MGANs:该存储库包含论文“用于步态识别中特定于视图的特征学习的多任务GAN”的代码。
以下是一个简单的 GAN 的 MATLAB 代码示例:
```
% 设置超参数
num_epochs = 200;
batch_size = 64;
learning_rate = 0.0002;
latent_dim = 100;
% 加载数据
% ...
% 定义生成器
generator = Sequential([
Dense(256, 'relu', input_shape=[latent_dim]),
Dense(512, 'relu'),
Dense(1024, 'relu'),
Dense(784, 'tanh')
])
% 定义判别器
discriminator = Sequential([
Dense(1024, 'relu', input_shape=[784]),
Dropout(0.3),
Dense(512, 'relu'),
Dropout(0.3),
Dense(256, 'relu'),
Dropout(0.3),
Dense(1, 'sigmoid')
])
% 定义优化器和损失函数
generator_optimizer = Adam(learning_rate)
discriminator_optimizer = Adam(learning_rate)
loss = BinaryCrossentropy()
% 训练模型
for epoch in range(num_epochs):
for i in range(dataset_size // batch_size):
% 训练判别器
noise = tf.random.normal([batch_size, latent_dim])
generated_images = generator(noise)
real_images = dataset[i * batch_size: (i + 1) * batch_size]
combined_images = tf.concat([generated_images, real_images], axis=0)
labels = tf.concat([tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0)
with tf.GradientTape() as tape:
predictions = discriminator(combined_images)
d_loss = loss(labels, predictions)
grads = tape.gradient(d_loss, discriminator.trainable_variables)
discriminator_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))
% 训练生成器
noise = tf.random.normal([batch_size, latent_dim])
labels = tf.ones((batch_size, 1))
with tf.GradientTape() as tape:
generated_images = generator(noise)
predictions = discriminator(generated_images)
g_loss = loss(labels, predictions)
grads = tape.gradient(g_loss, generator.trainable_variables)
generator_optimizer.apply_gradients(zip(grads, generator.trainable_variables))
```
这是一个简单的 GAN 实现,你可以根据自己的需求和数据集来进行修改和调整。
阅读全文