编写pytorch代码,,定义一个transform对象用于对训练集进行归一化操作, 对训练集进行fit操作, 使用相同的均值和标准差对测试集进行transform操作,将归一化的训练集和测试集转换为张量
时间: 2024-03-24 12:38:08 浏览: 205
好的,以下是对应的PyTorch代码:
```python
import torch
import torchvision.transforms as transforms
# 定义 transform 对象
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化操作
])
# 加载训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
# 对训练集进行 fit 操作
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
mean = 0.
std = 0.
for images, _ in trainloader:
batch_samples = images.size(0) # 获取 batch size
images = images.view(batch_samples, images.size(1), -1)
mean += images.mean(2).sum(0)
std += images.std(2).sum(0)
mean /= len(trainloader.dataset)
std /= len(trainloader.dataset)
# 对测试集进行 transform 操作
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=mean.tolist(), std=std.tolist()) # 使用训练集的均值和标准差
])
# 转换为张量
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
train_data = []
train_labels = []
for data in trainloader:
inputs, labels = data
train_data.append(inputs)
train_labels.append(labels)
train_data = torch.cat(train_data, dim=0)
train_labels = torch.cat(train_labels, dim=0)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
test_data = []
test_labels = []
for data in testloader:
inputs, labels = data
test_data.append(inputs)
test_labels.append(labels)
test_data = torch.cat(test_data, dim=0)
test_labels = torch.cat(test_labels, dim=0)
```
希望这个回答可以帮到你!
阅读全文