请解释下面的代码:model=resnet18() num_ftrs=model.fc.in_features model.fc=nn.Linear(num_ftrs,10) model.conv1=nn.Conv2d(1,64,kernel_size=(7,7),stride=(2,2),padding=(3,3),bias=False)
时间: 2023-02-09 14:26:33 浏览: 403
这段代码使用了 PyTorch 深度学习框架,主要做了以下几件事情:
1. 定义了一个名为 "resnet18" 的模型,这是一个 ResNet 模型的一个版本。
2. 定义了一个变量 "num_ftrs",表示模型中全连接层(fc)的输入特征数。
3. 修改了模型中的全连接层,将输入特征数设置为 "num_ftrs",输出特征数设置为 10。
4. 修改了模型中第一个卷积层(conv1),将输入通道数设置为1,输出通道数设置为64,卷积核大小设置为(7,7),步长设置为(2,2),填充设置为(3,3),偏置项设置为False。
这段代码是在对预训练的resnet18模型进行修改,将其输入通道数改成1,输出通道数改成10,这样就可以适应新的数据集。
相关问题
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,下面是使用LDAM损失函数训练模型的代码:
```python
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
# 定义LDAM损失函数
class LDAMLoss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30):
super(LDAMLoss, self).__init__()
m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list))
m_list = m_list * (max_m / np.max(m_list))
m_list = torch.cuda.FloatTensor(m_list)
self.m_list = m_list
assert s > 0
self.s = s
if weight is not None:
weight = torch.FloatTensor(weight).cuda()
self.weight = weight
self.cls_num_list = cls_num_list
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index_float = index.type(torch.cuda.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1
batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1)
x_m = x - batch_m
output = torch.where(index, x_m, x)
if self.weight is not None:
output = output * self.weight[None, :]
target = torch.flatten(target) # 将 target 转换成 1D Tensor
logit = output * self.s
return F.cross_entropy(logit, target, weight=self.weight)
# 定义模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, classes)
model.to(DEVICE)
# 定义优化器和学习率调整器
optimizer = optim.Adam(model.parameters(), lr=model_lr)
scheduler = CosineAnnealingLR(optimizer, T_max=EPOCHS, eta_min=1e-6)
# 定义LDAM损失函数
cls_num_list = [len(dataset_train[dataset_train.targets == t]) for t in range(classes)]
criterion = LDAMLoss(cls_num_list)
# 定义数据加载器
train_loader = DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True)
# 训练模型
best_acc = 0.0
for epoch in range(start_epoch, EPOCHS + 1):
model.train()
train_loss = 0.0
train_corrects = 0
for inputs, labels in train_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
if use_dp:
inputs, labels = dp(inputs, labels)
if use_amp:
with amp.autocast():
inputs, labels = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = criterion(outputs, labels)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
scaler.step(optimizer)
scaler.update()
else:
inputs, labels_a, labels_b, lam = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = mixup_criterion(criterion, outputs, labels_a, labels_b, lam)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
optimizer.step()
optimizer.zero_grad()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_corrects += torch.sum(preds == labels.data)
train_loss /= len(dataset_train)
train_acc = train_corrects.double() / len(dataset_train)
model.eval()
test_loss = 0.0
test_corrects = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
test_corrects += torch.sum(preds == labels.data)
test_loss /= len(dataset_test)
test_acc = test_corrects.double() / len(dataset_test)
# 更新最佳模型
if test_acc > best_acc:
if use_ema:
ema_model.load_state_dict(model.state_dict())
best_acc = test_acc
# 更新学习率
scheduler.step()
# 打印训练结果
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(
epoch, EPOCHS, train_loss, train_acc, test_loss, test_acc))
```
使用torchvision.models.resnet50训练一个输出为20分类的模型,并用torch.save(model.state_dict(),存储,且能够被torch.load二次使用
下面是一个使用`torchvision.models.resnet50`训练一个输出为20分类的模型,并且将模型状态字典保存到磁盘上以供以后使用的示例代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
# 定义ResNet50模型
model = models.resnet50(pretrained=True)
# 修改最后一层全连接层
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 20)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
# ...省略训练代码...
# 保存模型状态字典
torch.save(model.state_dict(), 'resnet50_20class.pth')
```
在这个代码中,你首先使用`torchvision.models.resnet50`函数加载一个预训练的ResNet50模型,并将其赋值给`model`变量。接下来,你修改了最后一层全连接层,使其输出20个类别。然后,你定义了损失函数和优化器,并在训练循环中训练了模型。最后,你使用`torch.save()`方法将模型的状态字典保存到磁盘上。
要加载已经保存的模型状态字典,你可以使用以下代码:
```python
# 初始化ResNet50模型
model = models.resnet50(pretrained=False)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 20)
# 加载模型状态字典
model.load_state_dict(torch.load('resnet50_20class.pth'))
# 将模型设置为评估模式
model.eval()
```
在这个代码中,你首先初始化了一个新的ResNet50模型,并将最后一层全连接层修改为20个类别。然后,你使用`torch.load()`方法加载之前保存的模型状态字典,并将其加载到新的模型中。最后,你将模型设置为评估模式。
阅读全文