解释model.classifier[6] = torch.nn.Linear(in_features=4096, out_features=n_classes, bias=True)

时间: 2023-06-07 18:11:27 浏览: 48
这行代码是PyTorch中更改预训练模型的最后一层的方法。在这个例子中,model是预训练模型,classifier是它的最后一层。而in_features表示输入特征的数量,out_features表示输出的数量。这里的n_classes是我们希望输出的类别数量,bias代表每个输出的偏差。这行代码的作用是将最后一层的输出修改为我们需要的类别数量,以便用它来训练我们的模型。
相关问题

我有一个来自十个类别各100个共1000个的信号数据,每个数据有512个特征点,存储为一个(300,1,512)的torch.tensor张量,现在我想将其输入一个深度DenseNet网络训练分类模型用于分类这些类别,请使用pytorch实现

import torch.nn as nn import torch.utils.data as Data class DenseNet(nn.Module): def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=10): super(DenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv1d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm1d(64)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool1d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock num_features = 64 for i, num_layers in enumerate(block_config): block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=4, growth_rate=growth_rate, drop_rate=0.2) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm1d(num_features)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) # Initialization for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) def forward(self, x): features = self.features(x) out = F.relu(features, inplace=True) out = F.adaptive_avg_pool1d(out, (1,)) out = torch.flatten(out, 1) out = self.classifier(out) return out class _DenseBlock(nn.Sequential): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate) self.add_module('denselayer%d' % (i + 1), layer) class _DenseLayer(nn.Module): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): super(_DenseLayer, self).__init__() self.norm1 = nn.BatchNorm1d(num_input_features) self.relu1 = nn.ReLU(inplace=True) self.conv1 = nn.Conv1d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False) self.norm2 = nn.BatchNorm1d(bn_size * growth_rate) self.relu2 = nn.ReLU(inplace=True) self.conv2 = nn.Conv1d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False) self.drop_rate = drop_rate def forward(self, x): new_features = self.conv1(self.relu1(self.norm1(x))) new_features = self.conv2(self.relu2(self.norm2(new_features))) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return torch.cat([x, new_features], 1) class _Transition(nn.Sequential): def __init__(self, num_input_features, num_output_features): super(_Transition, self).__init__() self.norm = nn.BatchNorm1d(num_input_features) self.relu = nn.ReLU(inplace=True) self.conv = nn.Conv1d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False) self.pool = nn.AvgPool1d(kernel_size=2, stride=2) def forward(self, x): x = self.conv(self.relu(self.norm(x))) x = self.pool(x) return x # Load the data X = # Your data Y = # Your labels dataset = Data.TensorDataset(X, Y) dataloader = Data.DataLoader(dataset, batch_size=16, shuffle=True) # Instantiate the model model = DenseNet() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) # Train the model num_epochs = 10 for epoch in range(num_epochs): for i, (x, y) in enumerate(dataloader): # Forward pass outputs = model(x) # Compute loss loss = criterion(outputs, y) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # Print statistics if (i + 1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch + 1, num_epochs, i + 1, len(dataset) // 16, loss.item()))

图像分类任务中用pytorch实现shufflenetv2代替CSPdarknet53的代码怎么写,给出代码解释

首先,ShuffleNetV2 是一种轻量级的卷积神经网络,适合在计算资源有限的情况下进行图像分类任务。而CSPDarknet53是一种相对较重的网络,适用于更复杂的任务。 如果你想用ShuffleNetV2代替CSPDarknet53,你需要先将网络结构修改为ShuffleNetV2的结构。接着,你需要使用PyTorch实现ShuffleNetV2,并将其应用于图像分类任务中。 以下是一个简单的示例代码,展示了如何使用PyTorch实现ShuffleNetV2,并在ImageNet数据集上进行训练和测试。 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets # 定义ShuffleNetV2网络结构 class ShuffleNetV2(nn.Module): def __init__(self, num_classes=1000): super(ShuffleNetV2, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 24, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(24), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ShuffleBlock(24, 116), ShuffleBlock(116, 116), ShuffleBlock(116, 116), ShuffleBlock(116, 116), ShuffleBlock(116, 232), ShuffleBlock(232, 232), ShuffleBlock(232, 232), ShuffleBlock(232, 464), nn.Conv2d(464, 1024, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.AvgPool2d(kernel_size=7, stride=1, padding=0) ) self.classifier = nn.Linear(1024, num_classes) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 定义ShuffleBlock模块 class ShuffleBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ShuffleBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.stride = 2 if in_channels != out_channels else 1 # 分支1 if self.stride > 1: self.branch1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=self.stride, padding=1, groups=in_channels, bias=False), nn.BatchNorm2d(in_channels), nn.Conv2d(in_channels, out_channels//2, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_channels//2), nn.ReLU(inplace=True) ) # 分支2 self.branch2 = nn.Sequential( nn.Conv2d(in_channels if self.stride > 1 else out_channels//2, out_channels//2, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_channels//2), nn.ReLU(inplace=True), nn.Conv2d(out_channels//2, out_channels//2, kernel_size=3, stride=self.stride, padding=1, groups=out_channels//2, bias=False), nn.BatchNorm2d(out_channels//2), nn.Conv2d(out_channels//2, out_channels//2, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_channels//2), nn.ReLU(inplace=True) ) def forward(self, x): if self.stride > 1: x1 = x[:, :self.in_channels//2, :, :] x2 = x[:, self.in_channels//2:, :, :] x2 = self.branch1(x2) out = torch.cat([x1, x2], dim=1) else: out = self.branch2(x) out = torch.cat([x, out], dim=1) out = channel_shuffle(out, 2) return out # 定义通道混洗函数 def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) # transpose x = torch.transpose(x, 1, 2).contiguous() # reshape x = x.view(batchsize, -1, height, width) return x # 加载数据集 train_transform = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) test_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = datasets.ImageNet(root='./data', train=True, download=True, transform=train_transform) test_dataset = datasets.ImageNet(root='./data', train=False, download=True, transform=test_transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4) # 定义模型、损失函数、优化器 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = ShuffleNetV2(num_classes=1000).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001) # 训练模型 num_epochs = 100 for epoch in range(num_epochs): model.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print("Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}".format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print("Epoch [{}/{}], Test Accuracy: {:.4f}".format(epoch+1, num_epochs, correct/total)) # 保存模型 torch.save(model.state_dict(), 'shufflenetv2.pth') ``` 在这个示例代码中,我们定义了一个ShuffleNetV2模型,并将其应用于ImageNet数据集上的图像分类任务。我们使用PyTorch自带的transforms模块来对图像进行预处理,并使用torchvision.datasets模块来加载数据集。我们使用交叉熵损失函数和随机梯度下降优化器来训练模型。在每个epoch结束时,我们打印出训练损失和测试准确率,并将训练好的模型保存到文件中。 注意,这只是一个简单的示例代码,你可能需要根据自己的需求进行修改和调整。

相关推荐

最新推荐

recommend-type

typora.zip

typora.zip
recommend-type

系统中常用的软件版本说明.docx

系统中常用的软件版本说明.docx
recommend-type

c&c++学生档案管理系统,个人收支系统,职工管理系统等.rar

C语言、C++、delphi各种案例
recommend-type

orca算法的matlab仿真源代码.zip

orca算法的matlab仿真源代码.zip orca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matlab仿真源代码.ziporca算法的matla
recommend-type

JSJAVA卡片场景能力差异简析.docx

JSJAVA卡片场景能力差异简析
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码是用于生成 a 和 b 之间的随机数。首先,它使用 rand() 函数生成一个 [0,1) 之间的随机小数,然后将这个小数乘以 a、b 范围内的差值,再加上 a 和 b 中的较小值。这可以确保生成的随机数大于等于 a,小于等于 b,而且不会因为 a 和 b 之间的差距过大而导致难以生成足够多的随机数。最后,使用 fabs() 函数来确保计算结果是正数。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。