图像分类任务中用pytorch实现shufflenetv2代替CSPdarknet53的代码怎么写,给出代码解释
时间: 2023-09-29 18:09:29 浏览: 91
首先,ShuffleNetV2 是一种轻量级的卷积神经网络,适合在计算资源有限的情况下进行图像分类任务。而CSPDarknet53是一种相对较重的网络,适用于更复杂的任务。
如果你想用ShuffleNetV2代替CSPDarknet53,你需要先将网络结构修改为ShuffleNetV2的结构。接着,你需要使用PyTorch实现ShuffleNetV2,并将其应用于图像分类任务中。
以下是一个简单的示例代码,展示了如何使用PyTorch实现ShuffleNetV2,并在ImageNet数据集上进行训练和测试。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义ShuffleNetV2网络结构
class ShuffleNetV2(nn.Module):
def __init__(self, num_classes=1000):
super(ShuffleNetV2, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 24, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(24),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
ShuffleBlock(24, 116),
ShuffleBlock(116, 116),
ShuffleBlock(116, 116),
ShuffleBlock(116, 116),
ShuffleBlock(116, 232),
ShuffleBlock(232, 232),
ShuffleBlock(232, 232),
ShuffleBlock(232, 464),
nn.Conv2d(464, 1024, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
)
self.classifier = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 定义ShuffleBlock模块
class ShuffleBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ShuffleBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = 2 if in_channels != out_channels else 1
# 分支1
if self.stride > 1:
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=self.stride, padding=1, groups=in_channels, bias=False),
nn.BatchNorm2d(in_channels),
nn.Conv2d(in_channels, out_channels//2, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels//2),
nn.ReLU(inplace=True)
)
# 分支2
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels if self.stride > 1 else out_channels//2, out_channels//2, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels//2),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels//2, out_channels//2, kernel_size=3, stride=self.stride, padding=1, groups=out_channels//2, bias=False),
nn.BatchNorm2d(out_channels//2),
nn.Conv2d(out_channels//2, out_channels//2, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels//2),
nn.ReLU(inplace=True)
)
def forward(self, x):
if self.stride > 1:
x1 = x[:, :self.in_channels//2, :, :]
x2 = x[:, self.in_channels//2:, :, :]
x2 = self.branch1(x2)
out = torch.cat([x1, x2], dim=1)
else:
out = self.branch2(x)
out = torch.cat([x, out], dim=1)
out = channel_shuffle(out, 2)
return out
# 定义通道混洗函数
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
# transpose
x = torch.transpose(x, 1, 2).contiguous()
# reshape
x = x.view(batchsize, -1, height, width)
return x
# 加载数据集
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageNet(root='./data', train=True, download=True, transform=train_transform)
test_dataset = datasets.ImageNet(root='./data', train=False, download=True, transform=test_transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)
# 定义模型、损失函数、优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ShuffleNetV2(num_classes=1000).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001)
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
model.train()
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print("Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}".format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 测试模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Epoch [{}/{}], Test Accuracy: {:.4f}".format(epoch+1, num_epochs, correct/total))
# 保存模型
torch.save(model.state_dict(), 'shufflenetv2.pth')
```
在这个示例代码中,我们定义了一个ShuffleNetV2模型,并将其应用于ImageNet数据集上的图像分类任务。我们使用PyTorch自带的transforms模块来对图像进行预处理,并使用torchvision.datasets模块来加载数据集。我们使用交叉熵损失函数和随机梯度下降优化器来训练模型。在每个epoch结束时,我们打印出训练损失和测试准确率,并将训练好的模型保存到文件中。
注意,这只是一个简单的示例代码,你可能需要根据自己的需求进行修改和调整。
阅读全文