深度学习图像去雾代码实现pytorch
时间: 2023-10-19 15:09:05 浏览: 206
深度学习图像去雾代码的实现可以使用AOD-Net去雾网络的Python源代码。这个代码使用了卷积神经网络来对雾霾图像进行去雾,并且采用了pytorch作为实现框架。你可以在官方的pytorch网站上找到更多关于pytorch的详细信息和文档。根据你的需求,你可以在anaconda-prompt中复制生成的代码,并使用conda命令来安装pytorch。具体的安装命令是"conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch"。
相关问题
深度学习图像去雾python代码
以下是使用深度学习进行图像去雾的Python代码示例,使用的是AOD-Net去雾网络的PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
# 定义AOD-Net去雾网络
class AODNet(nn.Module):
def __init__(self):
super(AODNet, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(3)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(3)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(3)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn4 = nn.BatchNorm2d(3)
self.relu4 = nn.ReLU(inplace=True)
self.conv5 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn5 = nn.BatchNorm2d(3)
self.relu5 = nn.ReLU(inplace=True)
self.conv6 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn6 = nn.BatchNorm2d(3)
self.relu6 = nn.ReLU(inplace=True)
self.conv7 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn7 = nn.BatchNorm2d(3)
self.relu7 = nn.ReLU(inplace=True)
self.conv8 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn8 = nn.BatchNorm2d(3)
self.relu8 = nn.ReLU(inplace=True)
self.conv9 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn9 = nn.BatchNorm2d(3)
self.relu9 = nn.ReLU(inplace=True)
self.conv10 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn10 = nn.BatchNorm2d(3)
self.relu10 = nn.ReLU(inplace=True)
self.conv11 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn11 = nn.BatchNorm2d(3)
self.relu11 = nn.ReLU(inplace=True)
self.conv12 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn12 = nn.BatchNorm2d(3)
self.relu12 = nn.ReLU(inplace=True)
self.conv13 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn13 = nn.BatchNorm2d(3)
self.relu13 = nn.ReLU(inplace=True)
self.conv14 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn14 = nn.BatchNorm2d(3)
self.relu14 = nn.ReLU(inplace=True)
self.conv15 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn15 = nn.BatchNorm2d(3)
self.relu15 = nn.ReLU(inplace=True)
self.conv16 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn16 = nn.BatchNorm2d(3)
self.relu16 = nn.ReLU(inplace=True)
self.conv17 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn17 = nn.BatchNorm2d(3)
self.relu17 = nn.ReLU(inplace=True)
self.conv18 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn18 = nn.BatchNorm2d(3)
self.relu18 = nn.ReLU(inplace=True)
self.conv19 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn19 = nn.BatchNorm2d(3)
self.relu19 = nn.ReLU(inplace=True)
self.conv20 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn20 = nn.BatchNorm2d(3)
self.relu20 = nn.ReLU(inplace=True)
self.conv21 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn21 = nn.BatchNorm2d(3)
self.relu21 = nn.ReLU(inplace=True)
self.conv22 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn22 = nn.BatchNorm2d(3)
self.relu22 = nn.ReLU(inplace=True)
self.conv23 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn23 = nn.BatchNorm2d(3)
self.relu23 = nn.ReLU(inplace=True)
self.conv24 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn24 = nn.BatchNorm2d(3)
self.relu24 = nn.ReLU(inplace=True)
self.conv25 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn25 = nn.BatchNorm2d(3)
self.relu25 = nn.ReLU(inplace=True)
self.conv26 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn26 = nn.BatchNorm2d(3)
self.relu26 = nn.ReLU(inplace=True)
self.conv27 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn27 = nn.BatchNorm2d(3)
self.relu27 = nn.ReLU(inplace=True)
self.conv28 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn28 = nn.BatchNorm2d(3)
self.relu28 = nn.ReLU(inplace=True)
self.conv29 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn29 = nn.BatchNorm2d(3)
self.relu29 = nn.ReLU(inplace=True)
self.conv30 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn30 = nn.BatchNorm2d(3)
self.relu30 = nn.ReLU(inplace=True)
self.conv31 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn31 = nn.BatchNorm2d(3)
self.relu31 = nn.ReLU(inplace=True)
self.conv32 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn32 = nn.BatchNorm2d(3)
self.relu32 = nn.ReLU(inplace=True)
self.conv33 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn33 = nn.BatchNorm2d(3)
self.relu33 = nn.ReLU(inplace=True)
self.conv34 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn34 = nn.BatchNorm2d(3)
self.relu34 = nn.ReLU(inplace=True)
self.conv35 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn35 = nn.BatchNorm2d(3)
self.relu35 = nn.ReLU(inplace=True)
self.conv36 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn36 = nn.BatchNorm2d(3)
self.relu36 = nn.ReLU(inplace=True)
self.conv37 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn37 = nn.BatchNorm2d(3)
self.relu37 = nn.ReLU(inplace=True)
self.conv38 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn38 = nn.BatchNorm2d(3)
self.relu38 = nn.ReLU(inplace=True)
self.conv39 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn39 = nn.BatchNorm2d(3)
self.relu39 = nn.ReLU(inplace=True)
self.conv40 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn40 = nn.BatchNorm2d(3)
self.relu40 = nn.ReLU(inplace=True)
self.conv41 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn41 = nn.BatchNorm2d(3)
self.relu41 = nn.ReLU(inplace=True)
self.conv42 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn42 = nn.BatchNorm2d(3)
self.relu42 = nn.ReLU(inplace=True)
self.conv43 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn43 = nn.BatchNorm2d(3)
self.relu43 = nn.ReLU(inplace=True)
self.conv44 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn44 = nn.BatchNorm2d(3)
self.relu44 = nn.ReLU(inplace=True)
self.conv45 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn45 = nn.BatchNorm2d(3)
self.relu45 = nn.ReLU(inplace=True)
self.conv46 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn46 = nn.BatchNorm2d(3)
self.relu46 = nn.ReLU(inplace=True)
self.conv47 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn47 = nn.BatchNorm2d(3)
self.relu47 = nn.ReLU(inplace=True)
self.conv48 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn48 = nn.BatchNorm2d(3)
self.relu48 = nn.ReLU(inplace=True)
self.conv49 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn49 = nn.BatchNorm2d(3)
self.relu49 = nn.ReLU(inplace=True)
self.conv50 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn50 = nn.BatchNorm2d(3)
self.relu50 = nn.ReLU(inplace=True)
self.conv51 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn51 = nn.BatchNorm2d(3)
self.relu51 = nn.ReLU(inplace=True)
self.conv52 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn52 = nn.BatchNorm2d(3)
self.relu52 = nn.ReLU(inplace=True)
self.conv53 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn53 = nn.BatchNorm2d(3)
self.relu53 = nn.ReLU(inplace=True)
self.conv54 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn54 = nn.BatchNorm2d(3)
self.relu54 = nn.ReLU(inplace=True)
self.conv55 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn55 = nn.BatchNorm2d(3)
self.relu55 = nn.ReLU(inplace=True)
self.conv56 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
self.bn56 = nn.BatchNorm2d(3)
self.relu56 = nn.ReLU(inplace=True)
self.conv57 = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False)
通过风格迁移的图像去雾代码
风格迁移是一种计算机视觉技术,用于将一张图片的内容(通常是清晰的)转换成另一张图片的风格(比如艺术画作的风格)。对于图像去雾,我们通常不是直接使用风格迁移代码,而是结合其他图像处理算法,如深度学习中的生成对抗网络(GANs)或卷积神经网络(CNN)中的去雾模型。
在去雾代码中,可能会用到像CycleGAN这样的模型,它包含两个生成器和两个判别器,其中一个用于从雾gy图像生成清晰的hazy图像,另一个反之。训练过程中,模型会学习如何捕捉图像内容和风格之间的映射。以下是简化的Python示例,使用PyTorch库:
```python
import torch
from models import CycleGanModel
# 加载预训练的CycleGAN模型
model = CycleGanModel()
model.load_state_dict(torch.load('cyclegan_model.pth'))
# 输入雾化图像
input_image = preprocess_image(input_foggy_image)
# 预测清晰图像
output_image = model(input_image)
# 可能需要后处理步骤,如反标准化等
output_image = postprocess_image(output_image)
```
阅读全文