pytorch实现用shufflenetv2代替CSPdarknet53的代码
时间: 2023-07-29 20:14:37 浏览: 113
以下是将ShuffleNetV2替换为CSPDarknet53的代码示例:
首先,我们需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
然后,我们定义ShuffleNetV2模块:
```python
class ShuffleNetV2Block(nn.Module):
def __init__(self, input_channels, output_channels, mid_channels=None, ksize=3, stride=1, use_bn=True):
super(ShuffleNetV2Block, self).__init__()
if mid_channels is None:
mid_channels = output_channels // 2
self.stride = stride
self.use_bn = use_bn
if stride == 1:
self.branch1 = nn.Sequential()
else:
self.branch1 = nn.Sequential(
nn.AvgPool2d(kernel_size=3, stride=stride, padding=1),
nn.Conv2d(input_channels, input_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(input_channels),
nn.ReLU(inplace=True),
)
self.branch2 = nn.Sequential(
nn.Conv2d(input_channels if stride > 1 else mid_channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride, padding=ksize // 2, groups=mid_channels, bias=False),
nn.BatchNorm2d(mid_channels),
nn.Conv2d(mid_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(output_channels),
)
def forward(self, x):
x1 = self.branch1(x)
x2 = self.branch2(x if self.stride > 1 else F.relu(x1))
out = torch.cat((x1, x2), dim=1)
out = F.shuffle(out, 2) if self.stride == 2 else out
return out
```
接下来,我们定义CSPDarknet53模块:
```python
class CSPDarknet53(nn.Module):
def __init__(self):
super(CSPDarknet53, self).__init__()
self.stem = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
)
self.layer1 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
ShuffleNetV2Block(64, 64, ksize=3, stride=1),
nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
ShuffleNetV2Block(64, 64, ksize=3, stride=1),
nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
ShuffleNetV2Block(64, 64, ksize=3, stride=1),
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
ShuffleNetV2Block(128, 128, ksize=3, stride=1),
nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
ShuffleNetV2Block(128, 128, ksize=3, stride=1),
nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
ShuffleNetV2Block(128, 128, ksize=3, stride=1),
nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
ShuffleNetV2Block(128, 128, ksize=3, stride=1),
nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
ShuffleNetV2Block(128, 128, ksize=3, stride=1),
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ShuffleNetV2Block(256, 256, ksize=3, stride=1),
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ShuffleNetV2Block(256, 256, ksize=3, stride=1),
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ShuffleNetV2Block(256, 256, ksize=3, stride=1),
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ShuffleNetV2Block(256, 256, ksize=3, stride=1),
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ShuffleNetV2Block(256, 256, ksize=3, stride=1),
nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ShuffleNetV2Block(256, 256, ksize=3, stride=1),
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
ShuffleNetV2Block(512, 512, ksize=3, stride=1),
nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
ShuffleNetV2Block(512, 512, ksize=3, stride=1),
nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
ShuffleNetV2Block(512, 512, ksize=3, stride=1),
)
def forward(self, x):
x = self.stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
```
最后,我们可以使用CSPDarknet53替换任何需要使用Darknet53的模型。
例如,下面是一个RetinaNet模型,其中使用CSPDarknet53代替了标准的Darknet53:
```python
class RetinaNet(nn.Module):
def __init__(self, num_classes):
super(RetinaNet, self).__init__()
self.backbone = CSPDarknet53()
self.fpn = FPN([512, 1024, 2048], 256)
self.head = RetinaNetHead(num_classes)
def forward(self, x):
x = self.backbone(x)
features = self.fpn(x)
out = self.head(features)
return out
```
阅读全文