pytorch计算网络模型flops的代码
时间: 2023-09-21 18:08:34 浏览: 239
可以使用下面的代码计算PyTorch模型的FLOPs(浮点操作次数):
```python
import torch
from torch.autograd import Variable
def print_model_parm_flops(model, input_size, custom_layers):
multiply_adds = 1
params = 0
flops = 0
input = Variable(torch.rand(1, *input_size))
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split(".")[-1].split("'")[0]
if class_name == 'Conv2d':
out_h, out_w = output.size()[2:]
kernel_h, kernel_w = module.kernel_size
in_channels = module.in_channels
out_channels = module.out_channels
if isinstance(module.padding, int):
pad_h = pad_w = module.padding
else:
pad_h, pad_w = module.padding
if isinstance(module.stride, int):
stride_h = stride_w = module.stride
else:
stride_h, stride_w = module.stride
params += out_channels * (in_channels // module.groups) * kernel_h * kernel_w
flops += out_channels * (in_channels // module.groups) * kernel_h * kernel_w * out_h * out_w / (stride_h * stride_w)
elif class_name == 'Linear':
weight_flops = module.weight.nelement() * input[0].nelement() // module.weight.size(1)
bias_flops = module.bias.nelement()
flops = weight_flops + bias_flops
params = weight_flops + bias_flops
elif class_name in custom_layers:
custom_flops, custom_params = custom_layers[class_name](module, input, output)
flops += custom_flops
params += custom_params
else:
print(f"Warning: module {class_name} not implemented")
if not isinstance(module, torch.nn.Sequential) and \
not isinstance(module, torch.nn.ModuleList) and \
not (module == model):
hooks.append(module.register_forward_hook(hook))
# loop through the model architecture and register hooks for each layer
hooks = []
model.apply(register_hook)
# run the input through the model
model(input)
# remove the hooks
for hook in hooks:
hook.remove()
print(f"Number of parameters: {params}")
print(f"Number of FLOPs: {flops}")
return flops, params
```
调用这个函数需要传入模型、输入大小和一个自定义图层字典,其中字典的键是自定义层的名称,值是一个函数,该函数接受模块,输入和输出,返回FLOPs和参数数量。例如,如果您的模型包含一个名为MyLayer的自定义层,则可以将以下内容添加到字典中:
```python
def my_layer_impl(module, input, output):
# compute FLOPs and params for MyLayer
flops = ...
params = ...
return flops, params
custom_layers = {'MyLayer': my_layer_impl}
```
使用示例:
```python
import torchvision.models as models
model = models.resnet18()
input_size = (3, 224, 224)
custom_layers = {}
flops, params = print_model_parm_flops(model, input_size, custom_layers)
```
该函数将打印出模型的参数数量和FLOPs。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)