GNN图级任务代码实现,多分类,使用随机生成的数据集进行训练、验证
时间: 2023-12-26 08:03:45 浏览: 88
好的,这里提供一个基于PyTorch和DGL库的GNN图级任务(多分类)代码实现,使用随机生成的数据集进行训练和验证。以下是实现步骤:
1. 导入必要的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
import dgl
from dgl import DGLGraph
from dgl.data import citation_graph as citegrh
import networkx as nx
import numpy as np
import random
```
2. 生成随机图数据集
```python
# 生成随机图数据集
num_nodes = 50 # 节点数
num_classes = 5 # 类别数
num_feats = 10 # 特征数
num_edges = 100 # 边数
# 生成节点特征
features = torch.randn(num_nodes, num_feats)
# 生成边
src = torch.randint(low=0, high=num_nodes, size=(num_edges,))
dst = torch.randint(low=0, high=num_nodes, size=(num_edges,))
edges = torch.stack([src, dst], dim=0)
# 生成标签
labels = torch.randint(low=0, high=num_classes, size=(num_nodes,))
# 创建图
g = DGLGraph()
g.add_nodes(num_nodes)
g.add_edges(edges[0], edges[1])
g.ndata['feat'] = features
g.ndata['label'] = labels
```
3. 定义GNN模型
```python
# 定义GNN模型
class GCN(nn.Module):
def __init__(self, in_feats, hidden_size, num_classes):
super(GCN, self).__init__()
self.conv1 = nn.Conv2d(in_feats, hidden_size, kernel_size=1)
self.conv2 = nn.Conv2d(hidden_size, num_classes, kernel_size=1)
self.dropout = nn.Dropout(p=0.5)
def forward(self, g, features):
h = self.conv1(g, features.unsqueeze(1))
h = nn.functional.relu(h)
h = self.dropout(h)
h = self.conv2(g, h)
g.ndata['h'] = h.squeeze()
hg = dgl.mean_nodes(g, 'h')
return hg
```
4. 定义训练函数和测试函数
```python
# 定义训练函数
def train(model, g, optimizer, criterion):
model.train()
optimizer.zero_grad()
output = model(g, g.ndata['feat'])
loss = criterion(output, g.ndata['label'])
loss.backward()
optimizer.step()
return loss.item()
# 定义测试函数
def test(model, g):
model.eval()
output = model(g, g.ndata['feat'])
pred = output.argmax(dim=1)
acc = (pred == g.ndata['label']).float().mean()
return acc.item()
```
5. 定义训练过程
```python
# 定义训练过程
def train_process(model, g, epochs, lr, weight_decay):
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
criterion = nn.CrossEntropyLoss()
for epoch in range(epochs):
loss = train(model, g, optimizer, criterion)
acc = test(model, g)
print('Epoch {:03d} | Loss {:.4f} | Acc {:.4f}'.format(epoch, loss, acc))
```
6. 运行训练过程
```python
# 运行训练过程
model = GCN(num_feats, 16, num_classes)
train_process(model, g, 50, 0.01, 0.001)
```
在运行以上代码后,将会看到输出的训练过程和测试结果。这个例子中,我们使用了一个简单的GCN模型进行多分类任务的训练和测试,数据集是随机生成的。你可以根据实际任务需求,进行相应的修改和调整。
阅读全文