Translating and Starting a Program是什么,这个过程在计算机体系结构的大背景下处于什么位置,与MIPS的其他体系结构的关系如何

时间: 2023-06-09 19:03:10 浏览: 19
Translating and Starting a Program通常指的是将高级编程语言编写的程序转换为计算机可以理解和执行的机器语言代码,并将该代码加载到计算机的内存中开始执行的过程。这个过程在计算机体系结构中处于程序执行阶段的前面,即在指令执行阶段之前。它通常包括编译、链接、装载等几个步骤。 在MIPS架构中,Translating and Starting a Program过程与其他体系结构是相似的,主要区别在于编译器和链接器的实现方式以及代码的装载方式。MIPS架构通常使用MIPS编译器和MIPS链接器来将高级语言转换为机器语言代码,并将该代码加载到MIPS处理器的内存中开始执行。
相关问题

推荐几个知识图谱推理模型

### 回答1: 在知识图谱领域,常见的推理模型有: 1. 基于规则的推理模型:这类模型基于规则来进行推理,通常包括前向推理和后向推理。常见的基于规则的推理模型有事实推理和演绎推理。 2. 基于概率的推理模型:这类模型基于概率论来进行推理,通常用于在不确定情况下进行推理。常见的基于概率的推理模型有贝叶斯网络和马尔科夫随机场。 3. 基于神经网络的推理模型:这类模型基于神经网络来进行推理,通常用于处理高度复杂的推理任务。常见的基于神经网络的推理模型有深度神经网络和卷积神经网络。 ### 回答2: 知识图谱推理模型是指基于知识图谱数据进行推理和推断的模型,常用于关系推理、实体分类、实体链接等应用场景。以下是几个常见的知识图谱推理模型: 1. TransE(Translating Embeddings)模型:TransE模型通过将实体和关系映射到低维空间中的向量进行推理。该模型假设关系向量加上实体向量等于另一个实体向量,并通过最小化误差来学习实体和关系的向量表示。 2. TransH(Translating Hyperplanes)模型:TransH模型也是基于向量表示的方式进行推理,但与TransE不同,TransH模型将关系表示为超平面,通过映射实体向量到关系超平面上来进行推理。 3. Neo4j图数据库:Neo4j是一种图数据库,可用于存储和查询知识图谱数据,并具备灵活的图查询和图分析能力。通过Cypher查询语言,可以进行复杂的图谱推理操作,如路径查询、共同属性查询等。 4. Knowledge Graph Convolutional Network(KGCN)模型:KGCN模型是一种基于图神经网络的知识图谱推理模型。它利用图卷积神经网络对知识图谱进行推理,能够捕捉实体和关系之间的高阶依赖关系。 5. Graph Attention Network(GAT)模型:GAT模型也是一种基于图神经网络的推理模型。它采用自注意力机制,能够对知识图谱中的实体和关系进行精确的推理和建模,具备较强的推理表达能力。 这些推理模型在知识图谱的构建、数据查询和推理等方面发挥着重要的作用。根据不同应用场景和需求,选择合适的模型进行推理,可以提高知识图谱的应用效果和推理能力。 ### 回答3: 知识图谱推理模型是为了从知识图谱中推理出新的知识而设计的模型。以下是几个较为流行的知识图谱推理模型: 1. TransE模型:TransE是一种基于欧几里得距离的知识图谱推理模型。它通过学习实体和关系之间的向量表示,通过最小化实际的关系三元组与错误的关系三元组之间的距离来训练模型。TransE被广泛应用于实体关系抽取和链接预测等任务。 2. ConvE模型:ConvE是一种基于卷积神经网络的知识图谱推理模型。它将知识图谱中的实体和关系转换成二维矩阵,并使用卷积神经网络来学习实体和关系之间的关联。ConvE在关系分类和关系预测方面具有出色的表现。 3. ComplEx模型:ComplEx是一种基于复数表示的知识图谱推理模型。它通过学习实体和关系的复数嵌入表示,可以更好地捕捉实体之间的复杂关系。ComplEx在关系预测任务上具有较好的性能,并且能够处理多种类型的关系推理。 4. KG-BERT模型:KG-BERT是一种基于预训练模型BERT的知识图谱推理模型。它通过在大规模知识图谱上进行无监督训练,学习实体和关系的表示,并在任务特定的下游任务中进行微调。KG-BERT在多种知识图谱相关任务上表现出色,如实体链接和关系分类等。 以上是几个知识图谱推理模型的简单介绍,每个模型都有其自身的特点和适用场景。在实际应用中,可以根据具体任务需求选择合适的模型。

electre方法代码

### 回答1: electre方法(ELimination Et Choice Translating REality)是一种多标准决策方法,用于解决具有多个评估标准的决策问题。该方法基于数学模型,通过评分和排序来选择最佳的决策方案。 electre方法的主要步骤包括: 1. 标准设定:确定参与决策的评估标准,并对每个标准进行量化。 2. 评分:对每个决策方案根据标准进行评分,得到决策方案的得分矩阵。 3. 权重设置:为每个标准设置权重,以反映其在决策中的重要性。 4. 优势矩阵构建:根据得分矩阵和权重,计算每个决策方案对其他方案的优势关系。 5. 流入与流出矩阵构建:比较每个决策方案的优势关系,构建流入与流出矩阵。 6. 关系矩阵构建:根据流入与流出矩阵,计算每个方案的关系矩阵。 7. 排序:根据关系矩阵,将决策方案按照优劣程度进行排序。 根据以上步骤,可以编写electre方法的代码实现。代码主要包括以下几个部分: 1. 定义评分矩阵和权重矩阵,可以使用numpy库来实现。 2. 计算优势矩阵、流入与流出矩阵和关系矩阵,可以使用for循环和条件判断语句来实现。 3. 排序决策方案,可以使用排序算法(如快速排序)来实现。 electre方法的代码实现可以根据具体的决策问题进行定制和扩展,但需要注意的是,该方法在处理大规模的决策问题时,计算复杂度较高,可能需要更高效的算法和计算资源。 综上所述,electre方法的代码实现需要根据具体的决策问题进行定制和扩展,可以使用numpy库进行矩阵计算,以及排序算法进行决策方案的排序。同时,需要注意该方法在处理大规模问题时的效率。 ### 回答2: ELECTRE(Elimination Et Choix Traduisant la Réalité)是一种决策分析方法,用于解决多准则决策问题。以下是一个简单的ELECTRE算法的示例代码。 首先,我们需要定义决策问题中的准则和备选方案。假设有3个准则:成本、质量和可靠性,并且有4个备选方案。 ```python import numpy as np # 定义准则权重 weights = [0.4, 0.3, 0.3] # 定义备选方案矩阵 alternatives = np.array([[100, 8, 7], [150, 6, 9], [120, 7, 8], [110, 9, 6]]) # 定义决策者的阈值 thresholds = [80, 7, 8] # 计算正负流和比率矩阵 positive_flows = np.zeros_like(alternatives) negative_flows = np.zeros_like(alternatives) ratios = np.zeros_like(alternatives) for i in range(alternatives.shape[0]): for j in range(alternatives.shape[1]): if alternatives[i, j] >= thresholds[j]: positive_flows[i, j] = 1 else: negative_flows[i, j] = 1 ratios[i] = np.sum(positive_flows[i] * weights) / np.sum(np.sum(positive_flows * weights, axis=1)) # 计算排序 ranking = np.argsort(ratios)[::-1] print("排序结果:", ranking) ``` 在这个例子中,我们使用numpy库来处理矩阵运算和排序。我们首先定义了准则权重、备选方案矩阵和决策者的阈值。然后,我们计算每个备选方案的正负流和比率。最后,我们使用比率排序备选方案,得到最终的排序结果。 以上是一个简单的ELECTRE方法的代码示例,它可以帮助决策者解决多准则决策问题。请注意,实际应用中,可能需要根据特定情况进行适当修改和调整。 ### 回答3: ELECTRE(Elimination and Choice Translating Reality)方法是一种用于多标准决策分析的工具。下面是一个基本的ELECTRE方法的Python代码示例: ``` import numpy as np def electre(data, weights, thresholds): # 计算决策矩阵 decision_matrix = np.zeros((len(data), len(weights))) for i in range(len(data)): for j in range(len(weights)): decision_matrix[i][j] = data[i][j] * weights[j] # 计算相对流失度 loss_matrix = np.zeros((len(data), len(data))) for i in range(len(data)): for j in range(i+1, len(data)): for k in range(len(weights)): if decision_matrix[i][k] >= decision_matrix[j][k]: loss_matrix[i][j] += weights[k] else: loss_matrix[j][i] += weights[k] # 计算正负流失度 pos_loss_matrix = np.zeros((len(data), len(data))) neg_loss_matrix = np.zeros((len(data), len(data))) for i in range(len(data)): for j in range(i+1, len(data)): if loss_matrix[i][j] > thresholds[j]: pos_loss_matrix[i][j] = loss_matrix[i][j] - thresholds[j] elif loss_matrix[i][j] < thresholds[i]: neg_loss_matrix[i][j] = thresholds[i] - loss_matrix[i][j] # 计算优势关系 dominance_matrix = np.zeros((len(data), len(data))) for i in range(len(data)): for j in range(i+1, len(data)): if pos_loss_matrix[i][j] > pos_loss_matrix[j][i] and neg_loss_matrix[j][i] == 0: dominance_matrix[i][j] = 1 elif pos_loss_matrix[j][i] > pos_loss_matrix[i][j] and neg_loss_matrix[i][j] == 0: dominance_matrix[j][i] = 1 return dominance_matrix # 测试代码 data = [[2, 3, 4], [1, 5, 2], [3, 1, 4]] weights = [0.4, 0.3, 0.3] thresholds = [0.8, 0.6, 0.5] dominance_matrix = electre(data, weights, thresholds) print(dominance_matrix) ``` 上述代码实现了基本的ELECTRE方法,包括计算决策矩阵、相对流失度、正负流失度和优势关系。输入数据`data`是一个二维列表,每一行代表一个方案的多个标准值;`weights`是一个权重列表,代表每个标准的重要性;`thresholds`是一个阈值列表,用于确定正负流失度。输出结果`dominance_matrix`是一个二维矩阵,表示每个方案之间的优势关系,1表示前者优于后者,0表示相同或者无法比较。

相关推荐

function H = homography2d(original_points, target_points) % HOMOGRAPHY2D Computes the homography between two sets of 2D points % H = HOMOGRAPHY2D(ORIGINAL_POINTS, TARGET_POINTS) computes the % homography between two sets of 2D points using the Direct Linear % Transform (DLT) algorithm. % % INPUTS: % original_points - 2xN matrix of N original 2D points % target_points - 2xN matrix of N target 2D points % % OUTPUTS: % H - 3x3 homography matrix that maps original points to target points % Check inputs assert(size(original_points, 1) == 2, 'original_points should be a 2xN matrix'); assert(size(target_points, 1) == 2, 'target_points should be a 2xN matrix'); assert(size(original_points, 2) == size(target_points, 2), 'original_points and target_points should have the same number of points'); % Normalize points [original_points_normalized, T_original] = normalize_points(original_points); [target_points_normalized, T_target] = normalize_points(target_points); % Construct matrix A N = size(original_points_normalized, 2); A = zeros(2*N, 9); for i=1:N A(2*i-1, :) = [0, 0, 0, -original_points_normalized(1,i), -original_points_normalized(2,i), -1, target_points_normalized(2,i)*original_points_normalized(1,i), target_points_normalized(2,i)*original_points_normalized(2,i), target_points_normalized(2,i)]; A(2*i, :) = [original_points_normalized(1,i), original_points_normalized(2,i), 1, 0, 0, 0, -target_points_normalized(1,i)*original_points_normalized(1,i), -target_points_normalized(1,i)*original_points_normalized(2,i), -target_points_normalized(1,i)]; end % Solve Ah = 0 using SVD [~, ~, V] = svd(A); h = V(:, end); % Reshape h to obtain H H = reshape(h, 3, 3)'; % Denormalize H H = T_target \ H * T_original; end function [points_normalized, T] = normalize_points(points) % NORMALIZE_POINTS Normalizes 2D points to have zero mean and unit standard deviation % [POINTS_NORMALIZED, T] = NORMALIZE_POINTS(POINTS) normalizes 2D points % to have zero mean and unit standard deviation by scaling and translating % the points according to the formula: x' = (x - mu) / sigma, where x is % the original point, x' is the normalized point, mu is the mean of all % points and sigma is the standard deviation of all points. The function % returns the normalized points and the transformation matrix T that has % to be applied to the points to obtain their normalized version. % Compute mean and standard deviation of points mu = mean(points, 2); sigma = std(points, 0, 2); % Compute transformation matrix T = [1/sigma(1) 0 -mu(1)/sigma(1); 0 1/sigma(2) -mu(2)/sigma(2); 0 0 1]; % Apply transformation matrix to points points_normalized = T * [points; ones(1, size(points, 2))]; % Discard last row of ones points_normalized = points_normalized(1:2, :); end
对于基于TransE或类似模型进行推理,通常可以采用以下步骤: 1. 构建知识图谱:将知识库中的实体和关系抽象成节点和边,构建一个图谱。 2. 训练TransE模型:使用知识图谱作为输入,训练TransE模型来学习实体之间的关系。 3. 进行推理:通过查找知识图谱中的实体和关系,进行推理。 其中,比较关键的是如何训练TransE模型。TransE模型的核心思想是将实体和关系映射到同一向量空间中,从而在向量空间中计算它们之间的相似度。在训练阶段,需要最小化实体和关系之间的距离,使得真实的三元组距离近,而虚假的三元组距离远。相似度可以使用余弦相似度或点积等函数计算,具体实现可参考论文《TransE: Translating Embeddings for Modeling Multi-relational Data》。 下面给出一个简单的例子:假设有一个知识库包含以下三元组: (Tom, hasChild, Harry) (Tom, hasChild, Lily) (Lily, sibling, Harry) 使用TransE模型,我们可以将Tom、Harry和Lily分别映射到向量空间中的三个向量,然后通过计算向量之间的距离,来推理Tom是否是Harry的父亲。具体过程如下: 1. 将实体和关系映射到向量空间中: Tom -> (0, 0) Harry -> (2, 0) Lily -> (1, 1) hasChild -> (1, 0) sibling -> (0, 1) 2. 通过向量之间的距离计算相似度: sim(Tom, hasChild, Harry) = cos((0+1-2)/3) ≈ -0.63 sim(Tom, hasChild, Lily) = cos((0+1-1)/3) ≈ 0.33 sim(Tom, sibling, Harry) = cos((0-1-2)/3) ≈ -0.94 由此可见,Tom与Harry之间的相似度较低,因此不能推断Tom是Harry的父亲。而Tom与Lily之间的相似度较高,说明Tom是Lily的父亲。
pdf
Publisher: Prentice Hall PTR Pub Date: September 15, 2003 ISBN: 0-13-066946-6 Pages: 608 Section 2.7. The Spectrum of an Ideal Square Wave Section 2.8. From the Frequency Domain to the Time Domain Section 2.9. Effect of Bandwidth on Rise Time Section 2.10. Bandwidth and Rise Time Section 2.11. What Does "Significant" Mean? Section 2.12. Bandwidth of Real Signals Section 2.13. Bandwidth and Clock Frequency Section 2.14. Bandwidth of a Measurement Section 2.15. Bandwidth of a Model Section 2.16. Bandwidth of an Interconnect Section 2.17. Bottom Line Chapter 3. Impedance and Electrical Models Section 3.1. Describing Signal-Integrity Solutions in Terms of Impedance Section 3.2. What Is Impedance? Section 3.3. Real vs. Ideal Circuit Elements Section 3.4. Impedance of an Ideal Resistor in the Time Domain Section 3.5. Impedance of an Ideal Capacitor in the Time Domain Section 3.6. Impedance of an Ideal Inductor in the Time Domain Section 3.7. Impedance in the Frequency Domain Section 3.8. Equivalent Electrical Circuit Models Section 3.9. Circuit Theory and SPICE Section 3.10. Introduction to Modeling Section 3.11. The Bottom Line Chapter 4. The Physical Basis of Resistance Section 4.1. Translating Physical Design into Electrical Performance Section 4.2. The Only Good Approximation for the Resistance of Interconnects Section 4.3. Bulk Resistivity Section 4.4. Resistance per Length Section 4.5. Sheet Resistance Section 4.6. The Bottom Line Chapter 5. The Physical Basis of Capacitance Section 5.1. Current Flow in Capacitors Section 5.2. The Capacitance of a Sphere Section 5.3. Parallel Plate Approximation Section 5.4. Dielectric Constant Section 5.5. Power and Ground Planes and Decoupling Capacitance Section 5.6. Capacitance per Length Section 5.7. 2D Field Solvers Section 5.8. Effective Dielectric Constant Section 5.9. The Bottom Line Chapter 6. The Physical Basis of Inductance Section 6.1. What Is Inductance? Section 6.2. Inductance Principle #1: There Are Circular Magnetic-Field Line Loops Around All Currents Section 6.3. Inductance Principle #2: Inductance Is the Number of Webers of Field Line Loops Around a Conductor per Amp of Current Through It Section 6.4. Self-Inductance and Mutual Inductance Section 6.5. Inductance Principle #3: When the Number of Field Line Loops Around a Conductor Changes, There Will Be a Voltage Induced Across the Ends of the Conductor Section 6.6. Partial Inductance Section 6.7. Effective, Total, or Net Inductance and Ground Bounce Section 6.8. Loop Self- and Mutual Inductance Section 6.9. The Power-Distribution System (PDS) and Loop Inductance Section 6.10. Loop Inductance per Square of Planes Section 6.11. Loop Inductance of Planes and Via Contacts Section 6.12. Loop Inductance of Planes with a Field of Clearance Holes Section 6.13. Loop Mutual Inductance Section 6.14. Equivalent Inductance Section 6.15. Summary of Inductance Section 6.16. Current Distributions and Skin Depth Section 6.17. High-Permeability Materials Section 6.18. Eddy Currents Section 6.19. The Bottom Line Chapter 7. The Physical Basis of Transmission Lines Section 7.1. Forget the Word Ground Section 7.2. The Signal Section 7.3. Uniform Transmission Lines Section 7.4. The Speed of Electrons in Copper Section 7.5. The Speed of a Signal in a Transmission Line Section 7.6. Spatial Extent of the Leading Edge Section 7.7. "Be the Signal" Section 7.8. The Instantaneous Impedance of a Transmission Line Section 7.9. Characteristic Impedance and Controlled Impedance Section 7.10. Famous Characteristic Impedances Section 7.11. The Impedance of a Transmission Line Section 7.12. Driving a Transmission Line Section 7.13. Return Paths Section 7.14. When Return Paths Switch Reference Planes Section 7.15. A First-Order Model of a Transmission Line Section 7.16. Calculating Characteristic Impedance with Approximations Section 7.17. Calculating the Characteristic Impedance with a 2D Field Solver Section 7.18. An n-Section Lumped Circuit Model Section 7.19. Frequency Variation of the Characteristic Impedance Section 7.20. The Bottom Line Chapter 8. Transmission Lines and Reflections Section 8.1. Reflections at Impedance Changes Section 8.2. Why Are There Reflections? Section 8.3. Reflections from Resistive Loads Section 8.4. Source Impedance Section 8.5. Bounce Diagrams Section 8.6. Simulating Reflected Waveforms Section 8.7. Measuring Reflections with a TDR Section 8.8. Transmission Lines and Unintentional Discontinuities Section 8.9. When to Terminate Section 8.10. The Most Common Termination Strategy for Point-to-Point Topology Section 8.11. Reflections from Short Series Transmission Lines Section 8.12. Reflections from Short-Stub Transmission Lines Section 8.13. Reflections from Capacitive End Terminations Section 8.14. Reflections from Capacitive Loads in the Middle of a Trace Section 8.15. Capacitive Delay Adders Section 8.16. Effects of Corners and Vias Section 8.17. Loaded Lines Section 8.18. Reflections from Inductive Discontinuities Section 8.19. Compensation Section 8.20. The Bottom Line Chapter 9. Lossy Lines, Rise-Time Degradation, and Material Properties Section 9.1. Why Worry About Lossy Lines Section 9.2. Losses in Transmission Lines Section 9.3. Sources of Loss: Conductor Resistance and Skin Depth Section 9.4. Sources of Loss: The Dielectric Section 9.5. Dissipation Factor Section 9.6. The Real Meaning of Dissipation Factor Section 9.7. Modeling Lossy Transmission Lines Section 9.8. Characteristic Impedance of a Lossy Transmission Line Section 9.9. Signal Velocity in a Lossy Transmission Line Section 9.10. Attenuation and the dB Section 9.11. Attenuation in Lossy Lines Section 9.12. Measured Properties of a Lossy Line in the Frequency Domain Section 9.13. The Bandwidth of an Interconnect Section 9.14. Time-Domain Behavior of Lossy Lines Section 9.15. Improving the Eye Diagram of a Transmission Line Section 9.16. Pre-emphasis and Equalization Section 9.17. The Bottom Line Chapter 10. Cross Talk in Transmission Lines Section 10.1. Superposition Section 10.2. Origin of Coupling: Capacitance and Inductance Section 10.3. Cross Talk in Transmission Lines: NEXT and FEXT Section 10.4. Describing Cross Talk Section 10.5. The SPICE Capacitance Matrix Section 10.6. The Maxwell Capacitance Matrix and 2D Field Solvers Section 10.7. The Inductance Matrix Section 10.8. Cross Talk in Uniform Transmission Lines and Saturation Length Section 10.9. Capacitively Coupled Currents Section 10.10. Inductively Coupled Currents Section 10.11. Near-End Cross Talk Section 10.12. Far-End Cross Talk Section 10.13. Decreasing Far-End Cross Talk Section 10.14. Simulating Cross Talk Section 10.15. Guard Traces Section 10.16. Cross Talk and Dielectric Constant Section 10.17. Cross Talk and Timing Section 10.18. Switching Noise Section 10.19. Summary of Reducing Cross Talk Section 10.20. The Bottom Line Chapter 11. Differential Pairs and Differential Impedance Section 11.1. Differential Signaling Section 11.2. A Differential Pair Section 11.3. Differential Impedance with No Coupling Section 11.4. The Impact from Coupling Section 11.5. Calculating Differential Impedance Section 11.6. The Return-Current Distribution in a Differential Pair Section 11.7. Odd and Even Modes Section 11.8. Differential Impedance and Odd-Mode Impedance Section 11.9. Common Impedance and Even-Mode Impedance Section 11.10. Differential and Common Signals and Odd- and Even-Mode Voltage Components Section 11.11. Velocity of Each Mode and Far-End Cross Talk Section 11.12. Ideal Coupled Transmission-Line Model or an Ideal Differential Pair Section 11.13. Measuring Even- and Odd-Mode Impedance Section 11.14. Terminating Differential and Common Signals Section 11.15. Conversion of Differential to Common Signals Section 11.16. EMI and Common Signals Section 11.17. Cross Talk in Differential Pairs Section 11.18. Crossing a Gap in the Return Path Section 11.19. To Tightly Couple or Not to Tightly Couple Section 11.20. Calculating Odd and Even Modes from Capacitance- and Inductance-Matrix Elements Section 11.21. The Characteristic Impedance Matrix Section 11.22. The Bottom Line Appendix A. 100 General Design Guidelines to Minimize Signal-Integrity Problems Section A.1. Minimize Signal-Quality Problems on One Net Section A.2. Minimize Cross Talk Section A.3. Minimize Rail Collapse Section A.4. Minimize EMI Appendix B. 100 Collected Rules of Thumb to Help Estimate Signal-Integrity Effects Section B.1. Chapter 2 Section B.2. Chapter 3 Section B.3. Chapter 4 Section B.4. Chapter 5 Section B.5. Chapter 6 Section B.6. Chapter 7 Section B.7. Chapter 8 Section B.8. Chapter 9 Section B.9. Chapter 10 Section B.10. Chapter 11 Appendix C. Selected References About the Author
pdf
Apple Watch for Developers: Advice & Techniques from 5 Top Professionals gives you the base-knowledge and valuable secrets you'll need for your own projects from a core team of successful, experienced Apple Watch app-development experts. You'll explore elements such as branding within Watch apps, translating audio data into visual information, taming complex data, mastering environment-driven feature sets, and much more. This book is for developers who already have some knowledge of developing with WatchKit and WatchOS 2, and who are now interested in learning how to use them to create cutting edge Watch apps. It is written by five experienced, industry-leading Apple Watch developers who have created their apps early, and are now ready to pull apart examples to show you how to best create an Apple Watch app. This book will bring your cool Watch ideas to life! What you’ll learn Accept and handle voice recognition on the Apple Watch Best send data back and forth from iCloud Perform functions that take very few taps of a screen Leverage frequency detection Run your apps natively on the Watch Work with App Groups to send and receive data Interface with synced Twitter accounts Who this book is for Apple Watch developers Mobile developers (primarily iOS) Table of Contents Chapter 1: An Apple Watch Introduction Chapter 2: Examining the Stopwatch, Timer and Calendar Chapter 3: Taming Complex Data for the Watch Chapter 4: Examining Home Remote and its Components Chapter 5: Developing Notation – Audio to Musical Score Chapter 6: Building the Infi nitweet Application Chapter 7: Developing Apple Watch Cross-Platform Apps

最新推荐

信号与系统matlab实现卷积

多方法验证时域混叠,离散卷积、循环卷积

认识计算机, 二进制转换

进制转换

ITIL考试中文试题.pdf

ITIL考试中文试题 内容丰富 稳过

生物信息学简明教程-it-ebooks

生物信息学简明教程_it-ebooks

R语言与Rcmdr全面指导与数据实例

R语言与Rcmdr全面指导与数据实例

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

特邀编辑特刊:安全可信计算

10特刊客座编辑安全和可信任计算0OZGUR SINANOGLU,阿布扎比纽约大学,阿联酋 RAMESHKARRI,纽约大学,纽约0人们越来越关注支撑现代社会所有信息系统的硬件的可信任性和可靠性。对于包括金融、医疗、交通和能源在内的所有关键基础设施,可信任和可靠的半导体供应链、硬件组件和平台至关重要。传统上,保护所有关键基础设施的信息系统,特别是确保信息的真实性、完整性和机密性,是使用在被认为是可信任和可靠的硬件平台上运行的软件实现的安全协议。0然而,这一假设不再成立;越来越多的攻击是0有关硬件可信任根的报告正在https://isis.poly.edu/esc/2014/index.html上进行。自2008年以来,纽约大学一直组织年度嵌入式安全挑战赛(ESC)以展示基于硬件的攻击对信息系统的容易性和可行性。作为这一年度活动的一部分,ESC2014要求硬件安全和新兴技术�

ax1 = fig.add_subplot(221, projection='3d')如何更改画布的大小

### 回答1: 可以使用`fig.set_size_inches()`方法来更改画布大小。例如,如果想要将画布大小更改为宽8英寸,高6英寸,可以使用以下代码: ``` fig.set_size_inches(8, 6) ``` 请注意,此方法必须在绘图之前调用。完整代码示例: ``` import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() fig.set_size_inches(8, 6) ax1 = fig.add_subplot(221, project

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

特邀编辑导言:片上学习的硬件与算法

300主编介绍:芯片上学习的硬件和算法0YU CAO,亚利桑那州立大学XINLI,卡内基梅隆大学TAEMINKIM,英特尔SUYOG GUPTA,谷歌0近年来,机器学习和神经计算算法取得了重大进展,在各种任务中实现了接近甚至优于人类水平的准确率,如基于图像的搜索、多类别分类和场景分析。然而,大多数方法在很大程度上依赖于大型数据集的可用性和耗时的离线训练以生成准确的模型,这在许多处理大规模和流式数据的应用中是主要限制因素,如工业互联网、自动驾驶车辆和个性化医疗分析。此外,这些智能算法的计算复杂性仍然对最先进的计算平台构成挑战,特别是当所需的应用受到功耗低、吞吐量高、延迟小等要求的严格限制时。由于高容量、高维度和高速度数据,最近传感器技术的进步进一步加剧了这种情况。0在严格的条件下支持芯片上学习和分类的挑战0性�