yolov5dwconv替换conv
时间: 2023-10-24 17:22:18 浏览: 229
yolov3-tiny.conv.15.rar
YoloV5中的Conv层使用的是传统的卷积操作,而YoloV5DWConv则使用深度可分离卷积来代替Conv层。深度可分离卷积可以将传统的卷积操作分解成两个部分:深度卷积和点卷积。其中,深度卷积只关注通道内的卷积操作,而点卷积则只关注通道间的卷积操作。这样一来,可以大幅减少计算量和参数量,提高模型的速度和精度。
如果要将Conv层替换为YoloV5DWConv,可以按照以下步骤进行:
1. 安装mmdetection和mmcv库
2. 修改yolov5.py文件中的Conv操作为YoloV5DWConv操作
```python
from mmdet.models import ConvModule
class YOLOV5DWConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=False,):
super(YOLOV5DWConv, self).__init__()
self.dw_conv = ConvModule(
in_channels,
in_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=False,
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
act_cfg=dict(type='SiLU', inplace=True))
self.sep_conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=bias)
def forward(self, x):
x = self.dw_conv(x)
x = self.sep_conv(x)
return x
```
3. 在yolov5.py文件中使用YoloV5DWConv替换Conv操作
```python
from .yolo_head import YOLOV5Head
from .yolo_neck import YOLOV5Neck
from .yolo_bbox_head import YOLOV5BBoxHead
class YOLOV5(nn.Module):
def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None):
super(YOLOV5, self).__init__()
self.backbone = build_backbone(backbone)
self.neck = build_neck(neck)
self.bbox_head = build_head(bbox_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.init_weights(pretrained=pretrained)
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 将Conv替换成YoloV5DWConv
if m.kernel_size == (3, 3):
new_module = YOLOV5DWConv(
m.in_channels,
m.out_channels,
kernel_size=m.kernel_size,
stride=m.stride,
padding=m.padding,
dilation=m.dilation,
groups=m.groups,
bias=(m.bias is not None),
)
new_module.sep_conv.weight.data = m.weight.data
if m.bias is not None:
new_module.sep_conv.bias.data = m.bias.data
m = new_module
else:
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, img, img_metas=None, return_loss=True, **kwargs):
x = self.backbone(img)
x = self.neck(x)
outs = self.bbox_head(x)
if return_loss:
loss_inputs = outs + (img_metas,)
losses = self.bbox_head.loss(*loss_inputs, **self.train_cfg)
return losses
else:
bbox_list = self.bbox_head.get_bboxes(*outs, img_metas, **kwargs)
return bbox_list
```
这样就可以使用YoloV5DWConv来替换Conv了。
阅读全文