DWConv(Conv)
时间: 2023-09-28 20:11:13 浏览: 337
DWConv(Conv)是一种深度卷积(Depthwise Conv)的卷积操作。在这个操作中,输入的特征图先通过深度卷积(dconv)进行处理,然后再通过普通的卷积(pconv)进行处理。深度卷积和普通卷积的核心区别在于,深度卷积的卷积核是与输入特征图的通道数相同的,而普通卷积的卷积核则是与输出特征图的通道数相同的。这种结构的设计可以有效地减少模型的参数量和计算量,同时保持较好的性能表现。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [各种卷积计算性能对比(Conv,DwConv,GhostConv,PConv,DSConv,DCNV)](https://download.csdn.net/download/weixin_38346042/87614080)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [[Deeplearning]dwconv](https://blog.csdn.net/qq_39782006/article/details/120009268)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [VAN(DWConv+DWDilationConv+PWConv)](https://blog.csdn.net/weixin_45104951/article/details/124345778)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文