function [X, iter, min_cost] = fista_backtracking(calc_f, grad, Xinit, opts, calc_F)
时间: 2023-03-29 10:00:58 浏览: 180
这是一个关于 FISTA 算法的问题,我可以回答。FISTA 算法是一种迭代算法,用于解决凸优化问题。它结合了梯度下降和加速技术,可以在一定程度上提高算法的收敛速度。该函数的输入参数包括:目标函数 calc_f、梯度函数 grad、初始值 Xinit、选项 opts 和计算 F 值的函数 calc_F。输出参数包括:最终结果 X、迭代次数 iter 和最小代价 min_cost。
相关问题
function [Result, cost, SNR]= denoising(input, lambda, max_Iter, label, Ori_Img) cost = []; SNR = []; Img_ori = im2double(input); [height,width,ch] = size(input);1 denom_tmp = (abs(psf2otf([1, -1],[height,width])).^2 + abs(psf2otf([1; -1],[height,width])).^2) if ch~=1 denom_tmp = repmat(denom_tmp, [1 1 ch]); end % Initialize Vraiables Diff_R_I = zeros(size(Img_ori)); grad_x = zeros(size(Img_ori)); grad_y = zeros(size(Img_ori)); aux_Diff_R_I = zeros(size(Img_ori)); aux_grad_x = zeros(size(Img_ori)); aux_grad_y = zeros(size(Img_ori)); Cost_prev = 10^5; alpha = 500; beta = 50; Iter = 0; % split bregman while Iter < max_Iter grad_x_tmp = grad_x + aux_grad_x/alpha; grad_y_tmp = grad_y + aux_grad_y/alpha; numer_alpha = fft2(Diff_R_I+ aux_Diff_R_I/beta) + fft2(Img_ori); numer_beta = [grad_x_tmp(:,end,:) - grad_x_tmp(:, 1,:), -diff(grad_x_tmp,1,2)]; numer_beta = numer_beta + [grad_y_tmp(end,:,:) - grad_y_tmp(1, :,:); -diff(grad_y_tmp,1,1)]; denomin = 1 + alpha/betadenom_tmp; numer = numer_alpha+alpha/betafft2(numer_beta); Result = real(ifft2(numer./denomin)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; grad_x = Result_x - aux_grad_x/alpha; grad_y = Result_y - aux_grad_y/alpha; Mag_grad_x = abs(grad_x); Mag_grad_y = abs(grad_y); if ch~=1 Mag_grad_x = repmat(sum(Mag_grad_x,3), [1,1,ch]); Mag_grad_y = repmat(sum(Mag_grad_y,3), [1,1,ch]); end grad_x = max(Mag_grad_x-lambda/alpha,0).(grad_x./Mag_grad_x); grad_y = max(Mag_grad_y-lambda/alpha,0).(grad_y./Mag_grad_y); grad_x(Mag_grad_x == 0) = 0; grad_y(Mag_grad_y == 0) = 0; Diff_R_I = Result-Img_ori-aux_Diff_R_I/beta; Mag_Diff_R_I = abs(Diff_R_I); if ch~=1 Mag_Diff_R_I = repmat(sum(Mag_Diff_R_I,3), [1,1,ch]); end if label == 1 Diff_R_I=max(Mag_Diff_R_I-1/beta,0).(Diff_R_I./Mag_Diff_R_I); else Diff_R_I=(beta/(2+beta)) * Diff_R_I; end Diff_R_I(Mag_Diff_R_I == 0) = 0; aux_Diff_R_I = aux_Diff_R_I + beta * (Diff_R_I - (Result - Img_ori )); aux_grad_x = aux_grad_x + alpha * (grad_x - (Result_x )); aux_grad_y = aux_grad_y + alpha * (grad_y - (Result_y)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; if label == 1 Cost_cur = sum(abs(Result(:) - Img_ori(:))) + lambdasum(abs(Result_x(:)) + abs(Result_y(:))); else Cost_cur = sum(abs(Result(:) - Img_ori(:)).^2) + lambda*sum(abs(Result_x(:)) + abs(Result_y(:))); end Diff = abs(Cost_cur - Cost_prev); Cost_prev = Cost_cur; cost = [cost Cost_cur]; SNR_tmp = sqrt( sum( (Result(:)-double(Ori_Img(:))).^2 )) / sqrt(numel(Result)); SNR = [SNR SNR_tmp]; Iter = Iter + 1; end end
这段代码实现了一种图像去噪算法,使用了Split Bregman方法。具体来说,该算法通过最小化一个带有$L_1$正则项的能量函数来去除噪声。其中,$L_1$正则项用于促使平滑图像的梯度尽可能小,从而去除噪声。
该算法的主要思想是将图像分解为梯度和残差两个部分,并分别对其进行处理。具体来说,算法首先通过FFT计算分母,并计算分子的两部分(其中一部分使用了差分算子),然后通过IFFT计算出分子除以分母的结果。接着,算法对计算得到的梯度进行$L_1$正则化,并更新残差。最后,算法计算当前的损失函数值和信噪比,并继续迭代直到达到最大迭代次数。
需要注意的是,该算法还可以根据label参数的不同取值,分别使用$L_2$正则项或$L_1$正则项来计算损失函数。同时,该算法还使用了一个特殊的变量$\beta$来平衡残差和梯度的影响,以实现更好的去噪效果。
转成matlab: def _apply_linesearch_optimzation(self, update_embedding_with, grad, calc_loss, loss, **kwargs): self.eta = self.eta_max if kwargs.get('first_iter',False) and not self.linesearch_first: self.eta = kwargs.get('eta_first',1) loss_diff = 1 while loss_diff > 0: loss_diff, temp_embedding, delta = self._linesearch_once( update_embedding_with,grad,calc_loss,loss,**kwargs) if self.eta <= self.eta_min and loss_diff > 0: loss_diff, temp_embedding, delta = self._linesearch_once( update_embedding_with,grad,calc_loss,loss,**kwargs) loss_diff = -1 self.eta *= 2 update_embedding_with(new_embedding=temp_embedding) return delta def _linesearch_once(self, update_embedding_with, grad, calc_loss, loss, **kwargs): delta = self._calc_delta(grad) temp_embedding = update_embedding_with(delta=delta,copy=True) loss_diff = calc_loss(temp_embedding) - loss self.eta /= 2 return loss_diff, temp_embedding, delta
function delta = _apply_linesearch_optimzation(self, update_embedding_with, grad, calc_loss, loss, varargin)
eta = self.eta_max;
if nargin > 4 && varargin{1} && ~self.linesearch_first
eta = varargin{2};
end
loss_diff = 1;
while loss_diff > 0
[loss_diff, temp_embedding, delta] = self._linesearch_once(update_embedding_with, grad, calc_loss, loss, varargin{:});
if eta <= self.eta_min && loss_diff > 0
[loss_diff, temp_embedding, delta] = self._linesearch_once(update_embedding_with, grad, calc_loss, loss, varargin{:});
loss_diff = -1;
end
end
eta = eta * 2;
update_embedding_with('new_embedding', temp_embedding);
end
function [loss_diff, temp_embedding, delta] = _linesearch_once(self, update_embedding_with, grad, calc_loss, loss, varargin)
delta = self._calc_delta(grad);
temp_embedding = update_embedding_with('delta', delta, 'copy', true);
loss_diff = calc_loss(temp_embedding) - loss;
self.eta = self.eta / 2;
end
阅读全文