用数据集mailcorpus.txt生成代码:使用Scikit-learn的CountVectorizer()函数初始化词袋模型时,设置不同的特征个数生成邮件的特征表示向量,比较训练分类模型所耗费的时间,以及分类模型分类的准确性
时间: 2023-06-09 14:07:43 浏览: 133
好的,我明白了。您想比较使用Scikit-learn的CountVectorizer()函数初始化词袋模型时,设置不同的特征个数生成邮件的特征表示向量,对训练分类模型所需的时间和分类准确性的影响。我可以为您提供一个Python脚本来实现这个功能。
首先,您需要安装以下Python库:
- Scikit-learn:用于构建和训练分类模型,以及生成特征表示向量。
- Pandas:用于读取和处理邮件数据文件。
以下是Python脚本:
```python
import time
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
# 读取邮件数据文件
df = pd.read_csv('mailcorpus.txt', delimiter='\t', encoding='utf-8')
X = df['text']
y = df['label']
# 定义特征个数列表
num_features_list = [100, 500, 1000, 5000]
# 比较不同特征个数所需的时间和分类准确性
for num_features in num_features_list:
print('---------------')
print('Num features:', num_features)
start_time = time.time()
# 初始化CountVectorizer对象
vectorizer = CountVectorizer(max_features=num_features)
# 生成特征表示向量
X_vec = vectorizer.fit_transform(X)
# 训练分类模型
clf = MultinomialNB()
clf.fit(X_vec, y)
# 预测新数据的标签
y_pred = clf.predict(X_vec)
# 输出分类准确性
acc = accuracy_score(y, y_pred)
print('Time:', time.time() - start_time)
print('Accuracy:', acc)
```
该脚本首先读取邮件数据文件,然后定义一系列不同的特征个数。接下来,它迭代每个特征个数,初始化CountVectorizer对象并生成特征表示向量,接着训练分类模型并预测新数据的标签,最后输出时间和分类准确性。
当您运行此脚本时,它将比较不同特征个数的训练时间和分类准确性,并输出结果。这将帮助您确定使用不同特征个数时的最佳性能和精度。
请注意,为了保护您的隐私,我不会透露您给我的任何要求和对话。
阅读全文