算法复杂度分析: 1.活动安排问题 2.最优装载 3.单源最短路径 4.最小生成树算法 5.多机调度问题
时间: 2023-12-20 09:06:14 浏览: 108
计算机算法复杂性分析
1. 活动安排问题:常见的解法是使用拓扑排序,时间复杂度为 O(V+E),其中 V 和 E 分别为顶点数和边数。如果使用动态规划,则时间复杂度为 O(n^2),其中 n 为活动数目。
2. 最优装载:最优装载问题可以使用贪心算法解决。时间复杂度为 O(nlogn),其中 n 为物品数目,因为需要对物品按照重量进行排序。
3. 单源最短路径:常用的解法有 Dijkstra 算法和 Bellman-Ford 算法。Dijkstra 算法的时间复杂度为 O((V+E)logV),其中 V 和 E 分别为顶点数和边数。Bellman-Ford 算法的时间复杂度为 O(VE),其中 V 和 E 分别为顶点数和边数。
4. 最小生成树算法:Prim 算法和 Kruskal 算法是常用的解法。Prim 算法的时间复杂度为 O(V^2),其中 V 为顶点数。Kruskal 算法的时间复杂度为 O(ElogE),其中 E 为边数。
5. 多机调度问题:常用的解法有贪心算法和动态规划。贪心算法的时间复杂度为 O(nlogn),其中 n 为任务数目,因为需要对任务按照处理时间进行排序。动态规划的时间复杂度为 O(nm^2),其中 n 为任务数目,m 为机器数目。
阅读全文