c++求给定精度的简单交错序列部分和
时间: 2023-04-12 08:00:23 浏览: 124
可以使用Leibniz公式求给定精度的简单交错序列部分和,代码如下:
```lua
function calculate_partial_sum(precision)
local sum = 0
local sign = 1
local denominator = 1
local term = 1
while math.abs(term) > precision do
sum = sum + term
sign = -sign
denominator = denominator + 2
term = sign / denominator
end
return sum
end
local precision = 0.0001
local partial_sum = calculate_partial_sum(precision)
print(partial_sum)
```
该代码使用了一个while循环,每次计算交错序列的下一项,并将其加到总和中,直到下一项的绝对值小于给定的精度。最后返回计算出的部分和。
相关问题
用c++求给定精度的简单交错序列部分和
好的,我可以回答这个问题。对于给定精度的简单交错序列,我们可以使用以下代码来计算其部分和:
```c
#include <stdio.h>
double alternating_sum(double precision) {
double sum = .;
double term = 1.;
int sign = 1;
int n = 1;
while (term >= precision) {
sum += sign * term;
sign = -sign;
n++;
term = 1. / n;
}
return sum;
}
int main() {
double precision = .0001;
double sum = alternating_sum(precision);
printf("The alternating sum is %f\n", sum);
return ;
}
```
在这个代码中,我们使用一个 while 循环来计算交错序列的部分和。我们使用 term 变量来表示每一项的值,sign 变量来表示每一项的符号,n 变量来表示每一项的下标。我们不断地计算新的一项,直到这一项的值小于给定的精度 precision。最后,我们返回计算出来的部分和。
希望这个代码可以帮助你解决问题!
pta求平方与倒数序列的部分和c++语言
以下是使用C++语言计算PTA求平方与倒数序列的部分和的代码:
#include <iostream>
using namespace std;
int main() {
int n;
cin >> n; // 输入序列长度
double sum1 = 0, sum2 = 0; // 初始化两个部分和
for (int i = 1; i <= n; i++) {
sum1 += i * i; // 计算平方部分和
sum2 += 1.0 / i; // 计算倒数部分和
}
cout << "sum1=" << sum1 << endl; // 输出平方部分和
cout << "sum2=" << sum2 << endl; // 输出倒数部分和
return 0;
}
阅读全文