self.conv1 = nn.Sequential
时间: 2023-11-12 11:15:33 浏览: 52
这一行代码定义了一个由多个神经网络层组成的序列,其中nn.Sequential()表示按照顺序依次执行每个神经网络层。在这个例子中,self.conv1是一个由四个神经网络层组成的序列,包括一个卷积层、一个批归一化层、一个ReLU激活函数和一个最大池化层。这个序列可以视为一个整体,被当作一个神经网络层来使用。
相关问题
self.conv1 = nn.Sequential(nn.Conv2d(1, 40, (1, 7), padding=0), nn.ReLU(), nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=1)) self.conv2 = nn.Sequential(nn.Conv2d(40, 40, (1, 5), padding=0), nn.ReLU(), nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=1)) self.conv3 = nn.Sequential(nn.Conv2d(40, 40, (2, 7), padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2, padding=1)) self.conv4 = nn.Sequential(nn.Conv2d(40, 40, (2, 5), padding=1), nn.ReLU())请问nn.linear 输入特征大小怎么计算
nn.linear的输入特征大小可以通过前面卷积层的输出大小计算得出,具体计算方法是先将卷积层的输出特征图展平为一维向量,然后计算其长度,即可得到输入特征大小。例如,如果前面的卷积层输出大小为[batch_size, 40, 7, 7],则将其展平为一维向量后长度为40*7*7=1960,因此nn.linear的输入特征大小为1960。
class CNN(nn.Module): def __init__(self,input_size,output_size): super(CNN, self).__init__() self.B = B self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Sequential( nn.Conv1d(in_channels=input_size, out_channels=64, kernel_size=2), # 24 - 2 + 1 = 23 nn.ReLU(), nn.MaxPool1d(kernel_size=2, stride=1), # 23 - 2 + 1 = 22 ) self.conv2 = nn.Sequential( nn.Conv1d(in_channels=64, out_channels=128, kernel_size=2), # 22 - 2 + 1 = 21 nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=1), # 21 - 2 + 1 = 20 ) self.Linear1 = nn.Linear(self.B * 127 * 20, self.B * 50) self.Linear2 = nn.Linear(self.B * 50 , output_size) def forward(self, x): # [batch_size, n_features, data_len] x = x.permute(0, 2, 1) x = self.conv1(x) x = self.conv2(x) x = x.view(-1) x = self.Linear1(x) x = self.relu(x) x = self.Linear2(x) x = x.view(x.shape[0], -1) return x
这段代码定义了一个CNN模型,它包含了两个卷积层和两个全连接层。下面是对代码的解释:
```python
class CNN(nn.Module):
def __init__(self, input_size, output_size):
super(CNN, self).__init__()
self.B = B
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Sequential(
nn.Conv1d(in_channels=input_size, out_channels=64, kernel_size=2), # 24 - 2 + 1 = 23
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=1), # 23 - 2 + 1 = 22
)
self.conv2 = nn.Sequential(
nn.Conv1d(in_channels=64, out_channels=128, kernel_size=2), # 22 - 2 + 1 = 21
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=1), # 21 - 2 + 1 = 20
)
self.Linear1 = nn.Linear(self.B * 127 * 20, self.B * 50)
self.Linear2 = nn.Linear(self.B * 50 , output_size)
def forward(self, x):
# [batch_size, n_features, data_len]
x = x.permute(0, 2, 1)
x = self.conv1(x)
x = self.conv2(x)
x = x.view(-1)
x = self.Linear1(x)
x = self.relu(x)
x = self.Linear2(x)
x = x.view(x.shape[0], -1)
return x
```
在构造函数`__init__`中,模型初始化了一些参数并定义了网络的各个层。其中,`self.conv1`是一个包含了一个卷积层、ReLU激活函数和最大池化层的序列。`self.conv2`也是一个类似的序列。`self.Linear1`和`self.Linear2`分别是两个全连接层。
在前向传播函数`forward`中,输入数据首先进行形状变换,然后通过卷积层和激活函数进行特征提取和降维。之后,将特征展平并通过全连接层进行预测。最后,输出结果进行形状变换以匹配预期的输出形状。
需要注意的是,代码中的一些变量(如`B`)没有给出具体的定义,你可能需要根据自己的需求进行修改。
希望这个解释对你有所帮助!如果还有其他问题,请随时提问。
阅读全文