self.conv1 = nn.Sequential( nn.Conv2d( in_channels = in_channels, out_channels = 24, kernel_size = 3, stride = 1, padding = 1, ), nn.ReLU(), nn.MaxPool2d(kernel_size=2) )
时间: 2024-02-10 16:19:01 浏览: 200
这段代码是定义了一个卷积层,包括一个卷积操作、一个ReLU激活函数和一个最大池化操作。其中nn.Conv2d是PyTorch中的二维卷积层,in_channels是输入图像的通道数,out_channels是输出的特征图的通道数,kernel_size是卷积核的大小,stride是卷积核的步长,padding是卷积操作的填充。ReLU激活函数用于增加模型的非线性,MaxPool2d用于对特征图进行最大池化操作,降低特征图的尺寸。这个卷积层的输出尺寸为输入图像的尺寸除以2。
相关问题
def __init__(self, in_channels, out_channels, stride): super(RestNetDownBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride[0], padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride[1], padding=1) self.bn2 = nn.BatchNorm2d(out_channels) self.extra = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride[0], padding=0), nn.BatchNorm2d(out_channels) ) ———————————————— 逐行解释
这段代码是 `RestNetDownBlock` 类的初始化函数 `__init__`。下面逐行解释这段代码的作用:
1. `super(RestNetDownBlock, self).__init__()`:调用父类 `nn.Module` 的初始化函数,确保正确地初始化该类的父类部分。
2. `self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride[0], padding=1)`:定义了一个卷积层 `conv1`,输入通道数为 `in_channels`,输出通道数为 `out_channels`,卷积核大小为 3x3,步长为 `stride[0]`,填充为 1。
3. `self.bn1 = nn.BatchNorm2d(out_channels)`:定义了一个批归一化层 `bn1`,输入通道数为 `out_channels`,用于对 `conv1` 的输出进行批归一化操作。
4. `self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride[1], padding=1)`:定义了另一个卷积层 `conv2`,输入通道数和输出通道数都为 `out_channels`,卷积核大小为 3x3,步长为 `stride[1]`,填充为 1。
5. `self.bn2 = nn.BatchNorm2d(out_channels)`:定义了另一个批归一化层 `bn2`,输入通道数为 `out_channels`,用于对 `conv2` 的输出进行批归一化操作。
6. `self.extra = nn.Sequential(...)`:定义了一个额外的操作序列,其中包含一个卷积层和一个批归一化层。这个额外的操作序列用于处理输入 `x` 以适应与残差块的输出形状相匹配。
这段代码的作用是初始化 `RestNetDownBlock` 类的各个组件,包括卷积层、批归一化层和额外的操作序列。这些组件将在该类的前向传播函数中使用。
class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层
为了用稀疏表示替换全连接层,需要先将特征图展平,然后使用稀疏矩阵与其进行乘法运算。
以下是修改后的代码:
```
import torch.sparse as sparse
class ResNet18_2D(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18_2D, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1)
self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2)
self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2)
self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# 替换全连接层
self.fc = nn.Identity()
def _make_layer(self, block, out_channels, num_blocks, stride):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
# 使用稀疏矩阵与展平后的特征图进行乘法运算
out = sparse.mm(out, nn.Parameter(torch.randn(out.size(1), 512)))
return out
```
阅读全文