class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.LeakyReLU = nn.LeakyReLU(negative_slope=0.1) self.relu = nn.ReLU(inplace=True) self.elu = nn.ELU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): # out = F.ReLU(self.bn1(self.conv1(x))) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) return out 在self.layer4(out)和 self.avgpool(out)之间加CBAM
时间: 2024-01-12 15:03:52 浏览: 130
要在 `self.layer4(out)` 和 `self.avgpool(out)` 之间CBAM模块,可以按照以下步骤进行修改:
首先,导入CBAM模块的相关库:
```python
from cbam import CBAM
```
然后,在ResNet18_2D类中添加CBAM模块:
```python
self.cbam = CBAM(512) # 添加CBAM模块,输入通道数为512
```
最后,在forward方法中使用CBAM模块:
```python
out = self.layer4(out)
out = self.cbam(out) # 使用CBAM模块
out = self.avgpool(out)
```
确保在使用CBAM模块之前,已经定义了CBAM类并导入相应的库。
这样,你就在ResNet18_2D模型中成功添加了CBAM模块。请注意,这仅仅是示例代码,你可能需要根据实际情况自行进行调整和修改。
相关问题
class ResNetRGBD(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNetRGBD, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1
这是一个 PyTorch 中的 ResNetRGBD 模型类的定义,它继承自 nn.Module 类。在初始化函数 `__init__` 中,它接受以下参数:
- `block`:ResNet 中残差块的类(比如 BasicBlock 或 Bottleneck)。
- `layers`:一个列表,表示每个残差块堆叠的数量。
- `num_classes`:输出类别的数量。
- `zero_init_residual`:是否使用零初始化残差块的权重。
- `groups`:分组卷积中的组数。
- `width_per_group`:每个组的通道数。
- `replace_stride_with_dilation`:是否使用空洞卷积代替步幅卷积来降低下采样率。
- `norm_layer`:归一化层的类型(比如 BatchNorm2d 或 GroupNorm)。
其中,`self._norm_layer` 表示使用的归一化层,`self.inplanes` 表示当前的通道数,`self.dilation` 表示当前的空洞率。
class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层
为了用稀疏表示替换全连接层,需要先将特征图展平,然后使用稀疏矩阵与其进行乘法运算。
以下是修改后的代码:
```
import torch.sparse as sparse
class ResNet18_2D(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18_2D, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1)
self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2)
self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2)
self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# 替换全连接层
self.fc = nn.Identity()
def _make_layer(self, block, out_channels, num_blocks, stride):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
# 使用稀疏矩阵与展平后的特征图进行乘法运算
out = sparse.mm(out, nn.Parameter(torch.randn(out.size(1), 512)))
return out
```
阅读全文