import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import os class FCNTransformerNet(nn.Module): def __init__(self, num_classes): super(FCNTransformerNet, self).__init__() self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6) self.classification_head = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Linear(512, num_classes) ) def forward(self, x): fcn_output = self.fcn_backbone(x)['out'] fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1) fcn_output = fcn_output.permute(2, 0, 1) transformer_output = self.transformer_encoder(fcn_output) transformer_output = transformer_output.permute(1, 2, 0) transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1) output = self.classification_head(transformer_output) return output FCNTransformerNet net = FCNTransformerNet(num_classes=2) input_batch = torch.randn(4, 3, 512, 512) output_batch = net(input_batch) print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512]) 运行这段代码,并改错
时间: 2024-04-15 07:31:12 浏览: 187
在这段代码中,有几个问题需要进行修正。
首先,你定义了一个名为 `FCNTransformerNet` 的类,但是没有在代码末尾实例化这个类。你需要添加 `()` 来实例化该类,将其赋值给变量 `net`。
其次,你需要将 `FCNTransformerNet` 类的定义放在 `if __name__ == "__main__":` 条件语句内部,以确保它只在主程序中运行,而不是在模块导入时运行。
最后,你的代码中缺少了一些必要的导入语句。你需要导入 `torch`, `torch.nn` 和 `torchvision.models`。
下面是修改后的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class FCNTransformerNet(nn.Module):
def __init__(self, num_classes):
super(FCNTransformerNet, self).__init__()
self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone
self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8)
self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6)
self.classification_head = nn.Sequential(
nn.Linear(2048, 512),
nn.ReLU(),
nn.Linear(512, num_classes)
)
def forward(self, x):
fcn_output = self.fcn_backbone(x)['out']
fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1)
fcn_output = fcn_output.permute(2, 0, 1)
transformer_output = self.transformer_encoder(fcn_output)
transformer_output = transformer_output.permute(1, 2, 0)
transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1)
output = self.classification_head(transformer_output)
return output
if __name__ == "__main__":
net = FCNTransformerNet(num_classes=2)
input_batch = torch.randn(4, 3, 512, 512)
output_batch = net(input_batch)
print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512])
```
请注意,这段代码假设你已经正确安装了 `torch` 和 `torchvision` 库。如果出现任何错误,你可能需要检查这些库的安装情况。
阅读全文