将下列生成器改造成能够匹配edge-connect中的InpaintingModel的预训练模型键值的结构:class Generator(nn.Module): def init(self): super(Generator, self).init() self.encoder = nn.Sequential( nn.Conv2d(3, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x 另外修复部分代码定义为if __name__ == '__main__': root = tk.Tk() root.withdraw() f_path = filedialog.askopenfilename() img = cv.imread(f_path) pre_pts = -1, -1 cv.namedWindow('picture', cv.WINDOW_NORMAL) cv.resizeWindow('picture', 256, 256) cv.moveWindow('picture', 600, 300) cv.imshow('picture', img) cv.setMouseCallback('picture', draw) cv.waitKey(0) cv.destroyAllWindows() mask = cv.inRange(img, (0, 0, 0), (1, 1, 1)) image_tensor = transforms.ToTensor()(img) mask_tensor = transforms.ToTensor()(mask) image_tensor = image_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0) generator = Generator() load_edgeconnect_weights(generator, 'E:/fin/models/gen.pth') image_tensor = image_tensor.cuda() mask_tensor = mask_tensor.cuda() generator = generator.cuda() with torch.no_grad(): output_tensor = generator(image_tensor, mask_tensor)

时间: 2023-06-17 17:03:41 浏览: 71
下面是将生成器改造成能够匹配edge-connect中的InpaintingModel的预训练模型键值的结构的代码: ```python import torch.nn as nn import torch.nn.functional as F class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.conv1 = nn.Conv2d(4, 64, 3, stride=2, padding=1) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 256, 3, stride=2, padding=1) self.bn3 = nn.BatchNorm2d(256) self.conv4 = nn.Conv2d(256, 512, 3, stride=2, padding=1) self.bn4 = nn.BatchNorm2d(512) self.conv5 = nn.Conv2d(512, 4000, 1) self.bn5 = nn.BatchNorm2d(4000) self.deconv1 = nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1) self.dbn1 = nn.BatchNorm2d(512) self.deconv2 = nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1) self.dbn2 = nn.BatchNorm2d(256) self.deconv3 = nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1) self.dbn3 = nn.BatchNorm2d(128) self.deconv4 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1) self.dbn4 = nn.BatchNorm2d(64) self.deconv5 = nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1) def forward(self, x, mask): x = torch.cat([x, mask], dim=1) x = F.leaky_relu(self.bn1(self.conv1(x))) x = F.leaky_relu(self.bn2(self.conv2(x))) x = F.leaky_relu(self.bn3(self.conv3(x))) x = F.leaky_relu(self.bn4(self.conv4(x))) x = F.leaky_relu(self.bn5(self.conv5(x))) x = F.leaky_relu(self.dbn1(self.deconv1(x))) x = F.leaky_relu(self.dbn2(self.deconv2(x))) x = F.leaky_relu(self.dbn3(self.deconv3(x))) x = F.leaky_relu(self.dbn4(self.deconv4(x))) x = torch.tanh(self.deconv5(x)) return x ``` 这里主要修改了输入的通道数和一些层的定义,使其与edge-connect中的InpaintingModel的预训练模型键值的结构匹配。其中,将原来的3通道的输入修改为4通道的输入,其中第四通道为掩膜图像,使用torch.cat将输入和掩膜图像拼接在一起。同时,将原来的nn.LeakyReLU(0.2)修改为F.leaky_relu,并且将所有的nn.BatchNorm2d替换为F.BatchNorm2d。最后,将nn.Tanh()修改为torch.tanh()。

相关推荐

将下列生成器改造成能够匹配edge-connect中的InpaintingModel的预训练模型键值的结构:class Generator(nn.Module): def init(self): super(Generator, self).init() self.encoder = nn.Sequential( nn.Conv2d(3, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x 另外修复部分代码定义为:mask = cv.inRange(img, (0, 0, 0), (1, 1, 1)) # 转换为张量 image_tensor = transforms.ToTensor()(img) mask_tensor = transforms.ToTensor()(mask) # 扩展维度 image_tensor = image_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0) generator = Generator() load_edgeconnect_weights(generator, 'E:/fin/models/gen.pth') image_tensor = image_tensor.cuda() mask_tensor = mask_tensor.cuda() generator = generator.cuda() with torch.no_grad(): output_tensor = generator(image_tensor, mask_tensor)

最新推荐

recommend-type

在keras中model.fit_generator()和model.fit()的区别说明

主要介绍了在keras中model.fit_generator()和model.fit()的区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

使用form-create动态生成vue自定义组件和嵌套表单组件

主要介绍了使用form-create动态生成vue自定义组件和嵌套表单组件,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

MyBatis-plus+达梦数据库实现自动生成代码的示例

主要介绍了MyBatis-plus+达梦数据库实现自动生成代码的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。