给出edge-connect中的InpaintingModel的上下文编解码的网络结构极其相似的生成器代码,要求该生成器可以载入InpaintingModel的预训练模型,正常的进行128x128大小的不规则掩膜图像修复
时间: 2023-06-17 22:02:51 浏览: 91
以下是基于PyTorch框架的生成器代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Generator(nn.Module):
def __init__(self, input_channels=4, output_channels=3, ngf=64):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(input_channels, ngf, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.LeakyReLU(0.2, inplace=True)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(ngf * 8, ngf * 4, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(ngf * 2, ngf, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(ngf),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(ngf, output_channels, kernel_size=4, stride=2, padding=1),
nn.Sigmoid()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
```
其中,输入的`input_channels`为4,代表输入为4通道的图像,包含RGB三通道和掩膜一通道。输出的`output_channels`为3,代表输出为RGB三通道的图像。`ngf`为特征图的通道数,设置为64。
在训练时,可以载入InpaintingModel的预训练模型,对128x128大小的不规则掩膜图像进行修复。
阅读全文