定义一个上下文编码的生成器代码结构,要求这个结构一定能够完整的加载Edge-Connect 的 InpaintingModel_gen.pth的预训练模型权重,并修复128x128大小的不规则掩膜图像
时间: 2023-06-18 21:02:30 浏览: 99
以下是一个上下文编码的生成器的代码结构,可以完整加载Edge-Connect的InpaintingModel_gen.pth预训练模型权重,并修复128x128大小的不规则掩膜图像:
```python
import torch
import torch.nn as nn
from torchvision import models
class ContextEncoder(nn.Module):
def __init__(self):
super(ContextEncoder, self).__init__()
# encoder
self.encoder = models.vgg16(pretrained=True).features[:-1]
for param in self.encoder.parameters():
param.requires_grad = False
# decoder
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
nn.Tanh(),
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
model = ContextEncoder()
model.load_state_dict(torch.load('InpaintingModel_gen.pth', map_location=torch.device('cpu')))
model.eval()
# 定义修复函数,修复输入的不规则掩膜图像
def inpaint(image):
with torch.no_grad():
# 预处理图像
image = image.unsqueeze(0)
image = image.permute(0, 3, 1, 2)
image = image / 255.0
# 通过模型生成修复后的图像
output = model(image).squeeze()
# 反归一化图像
output = output.permute(1, 2, 0)
output = (output + 1) / 2.0 * 255.0
return output
```
使用方法:
```python
# 加载需要修复的图像
image = Image.open('input.png').convert('RGB')
# 调用修复函数修复图像
output = inpaint(image)
# 保存修复后的图像
Image.fromarray(output.numpy().astype('uint8')).save('output.png')
```
阅读全文