给出edge-connect中的InpaintingModel的上下文编解码的网络结构极其相似的生成器代码,要求该生成器可以载入InpaintingModel的预训练模型,正常的进行不规则掩膜图像修复
时间: 2023-06-17 17:03:01 浏览: 99
以下是基于PyTorch框架的代码实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16
class InpaintGenerator(nn.Module):
def __init__(self, in_channels=4, out_channels=3, ngf=64):
super(InpaintGenerator, self).__init__()
self.conv1 = nn.Conv2d(in_channels, ngf, 5, stride=1, padding=2)
self.conv2 = nn.Conv2d(ngf, 2 * ngf, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(2 * ngf, 4 * ngf, 3, stride=2, padding=1)
self.res1 = ResidualBlock(4 * ngf)
self.res2 = ResidualBlock(4 * ngf)
self.res3 = ResidualBlock(4 * ngf)
self.res4 = ResidualBlock(4 * ngf)
self.res5 = ResidualBlock(4 * ngf)
self.deconv1 = nn.ConvTranspose2d(4 * ngf, 2 * ngf, 3, stride=2, padding=1, output_padding=1)
self.deconv2 = nn.ConvTranspose2d(2 * ngf, ngf, 3, stride=2, padding=1, output_padding=1)
self.deconv3 = nn.Conv2d(ngf, out_channels, 5, stride=1, padding=2)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = self.conv3(x)
x = F.relu(x)
x = self.res1(x)
x = self.res2(x)
x = self.res3(x)
x = self.res4(x)
x = self.res5(x)
x = self.deconv1(x)
x = F.relu(x)
x = self.deconv2(x)
x = F.relu(x)
x = self.deconv3(x)
x = self.tanh(x)
return x
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, 3, stride=1, padding=1)
self.conv2 = nn.Conv2d(channels, channels, 3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.bn2 = nn.BatchNorm2d(channels)
self.relu = nn.ReLU()
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
```
这里我们采用了类似于edge-connect中InpaintingModel的上下文编解码的网络结构,代码中的ResidualBlock为残差块,使用了Batch Normalization进行归一化,激活函数使用ReLU。其中,输入通道为4,输出通道为3,ngf为64,可以根据需要进行调整。
载入InpaintingModel的预训练模型:
```python
model = InpaintGenerator()
model.load_state_dict(torch.load('pretrained_model.pth'))
```
其中pretrained_model.pth是已经训练好的模型的参数文件。在正常的进行不规则掩膜图像修复时,可以将待修复的图像和掩膜拼接为4通道输入,然后将输出的3通道图像作为修复结果。
阅读全文