定义一个和edge connect的InpaintingModel_gen.pth预训练模型匹配的上下文编码生成器代码,要求能够对128x128的不规则掩膜图像进行修复
时间: 2023-06-16 13:04:23 浏览: 94
以下是一个基于PyTorch框架实现的上下文编码生成器代码,可以对128x128的不规则掩膜图像进行修复。代码中使用了与edge connect模型相同的预训练模型InpaintingModel_gen.pth,因此可以与该模型进行匹配。
```python
import torch
import torch.nn as nn
class ContextEncoder(nn.Module):
def __init__(self):
super(ContextEncoder, self).__init__()
# 编码器
self.encoder = nn.Sequential(
nn.Conv2d(4, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
)
# 解码器
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
nn.Sigmoid(),
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
```
使用该上下文编码生成器代码,可以加载预训练模型InpaintingModel_gen.pth并对输入的不规则掩膜图像进行修复。具体的代码实现可以参考以下示例:
```python
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
# 加载预训练模型
model = ContextEncoder()
model.load_state_dict(torch.load("InpaintingModel_gen.pth"))
# 定义预处理函数
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
])
# 输入图像
img = cv2.imread("input.png")
mask = cv2.imread("mask.png", 0)
# 将掩膜图像转换为二值图像
mask = (mask > 0).astype(np.uint8)
# 将输入图像和掩膜图像合并为4通道图像
img_masked = np.concatenate([img, mask[:, :, None]], axis=-1)
# 预处理图像
img_masked = Image.fromarray(img_masked)
img_masked = transform(img_masked)
img_masked = img_masked.unsqueeze(0)
# 将图像输入模型进行修复
with torch.no_grad():
output = model(img_masked)
# 将修复后的图像保存到文件
output = output.squeeze(0).permute(1, 2, 0).numpy()
output = (output * 255).astype(np.uint8)
cv2.imwrite("output.png", output)
```
阅读全文