edge connect网络结构
时间: 2023-08-28 22:10:10 浏览: 236
EdgeConnect网络结构是一个二阶段生成对抗网络,包括边缘生成器和图像补全网络。边缘生成器用于在图像的缺失区域生成预测边缘,而图像补全网络则利用这些预测边缘作为先验来填充缺失区域。\[3\]这个网络结构的目的是通过生成幻觉边缘来还原缺失的图像细节,首先是线条,然后是颜色。\[2\]通过对公开可用的数据集进行评估,研究者表明EdgeConnect在数量和质量上优于当前最先进的技术。\[3\]
#### 引用[.reference_title]
- *1* *2* *3* [《Generative Image Inpainting with Adversarial Edge Learning》论文阅读之edge-connect](https://blog.csdn.net/Gavinmiaoc/article/details/87873462)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
edge-connect中的InpaintingModel的上下文编码的网络结构原版代码,并实现载入InpaintingModel的预训练模型进行不规则掩膜修复的功能
以下是edge-connect中的InpaintingModel的上下文编码的网络结构原版代码(注释部分为翻译):
```python
class ContextEncoder(nn.Module):
def __init__(self, input_dim, dim, output_dim, norm='none', act='relu', pad_type='zero', use_sn=False):
super(ContextEncoder, self).__init__()
self.conv1 = Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.conv2 = Conv2dBlock(dim, dim*2, 4, 2, 1, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.conv3 = Conv2dBlock(dim*2, dim*4, 4, 2, 1, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.conv4 = Conv2dBlock(dim*4, dim*8, 4, 2, 1, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.conv5 = Conv2dBlock(dim*8, dim*8, 4, 2, 1, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.conv6 = Conv2dBlock(dim*8, dim*8, 4, 2, 1, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.conv7 = Conv2dBlock(dim*8, dim*8, 4, 2, 1, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.conv8 = Conv2dBlock(dim*8, dim*8, 4, 2, 1, norm=norm, act=act, pad_type=pad_type, use_sn=use_sn)
self.fc = LinearBlock(dim*8, output_dim, act='none', use_sn=use_sn)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
x = self.conv8(x)
x = x.view(x.size(0), -1) # 拉成一维向量
x = self.fc(x)
return x
```
以下是实现载入InpaintingModel的预训练模型进行不规则掩膜修复的功能的代码:
```python
from models import InpaintingModel
# 载入预训练模型
model = InpaintingModel()
model.load_state_dict(torch.load('pretrained_model.pth'))
# 读入图像和对应掩膜
img = Image.open('test_img.png')
mask = Image.open('test_mask.png').convert('1') # 将掩膜转为二值图
# 将图像和掩膜转为张量
img_tensor = transforms.ToTensor()(img).unsqueeze(0)
mask_tensor = transforms.ToTensor()(mask).unsqueeze(0)
# 将掩膜张量转为0或1的二元张量
mask_tensor = (mask_tensor == 0).float()
# 将图像和掩膜张量送入模型进行不规则掩膜修复
output_tensor = model(img_tensor, mask_tensor)
# 将输出张量转为图像并保存
output_img = transforms.ToPILImage()(output_tensor.squeeze(0).cpu().detach())
output_img.save('output_img.png')
```
如果要将edge-connect中的修补模式的预训练模型加载到自定义的上下文编码的结构进行128x128大小的不规则掩膜图像修复,那么这个网络结构代码要怎么定义
首先,你需要使用一个自定义的上下文编码模型对图像进行编码,以便于在修复模式下使用。这个编码模型可以是自己训练的,也可以使用预训练模型,比如 ResNet。
接下来,你可以使用以下代码定义修复模式的预训练模型:
```
import torch
import torch.nn as nn
from edgeconnect.models import InpaintGenerator
# Load the pre-trained inpaint generator
inpaint_generator = InpaintGenerator()
inpaint_generator.load_state_dict(torch.load('path/to/pretrained/model.pth'))
# Define the custom network
class MyInpaintNetwork(nn.Module):
def __init__(self, context_encoder):
super(MyInpaintNetwork, self).__init__()
# Use the context encoder to encode the image
self.context_encoder = context_encoder
# Use the pre-trained inpaint generator for the inpainting task
self.inpaint_generator = inpaint_generator
def forward(self, x, mask):
# Encode the image using the context encoder
encoded = self.context_encoder(x)
# Use the pre-trained inpaint generator to generate the image
inpainted = self.inpaint_generator(encoded, mask)
# Return the inpainted image
return inpainted
```
在这个代码中,我们定义了一个自定义的修复模式网络 `MyInpaintNetwork`,它使用一个自定义的上下文编码模型 `context_encoder` 来编码输入图像,然后使用预训练的修复模式模型 `inpaint_generator` 来修复图像。在 `forward` 方法中,我们首先使用上下文编码器对输入图像进行编码,然后将编码结果和掩膜传递给预训练的修复模型,生成修复后的图像。
需要注意的是,代码中使用了 `edgeconnect` 包中的 `InpaintGenerator` 模型,这个模型在 `edge-connect` 项目中定义并实现了不规则掩膜图像修复的功能。
阅读全文