定义一个上下文编码的生成器代码结构,要求这个结构一定能够完整的加载Edge-Connect 的 InpaintingModel_gen.pth的预训练模型权重,并修复128x128大小的不规则掩膜图像
时间: 2023-06-18 20:02:06 浏览: 62
以下是一个可能的上下文编码生成器的代码结构,可以加载 Edge-Connect 的 InpaintingModel_gen.pth 预训练模型权重,并修复128x128大小的不规则掩膜图像:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class ContextEncoder(nn.Module):
def __init__(self):
super(ContextEncoder, self).__init__()
# 加载预训练的模型
self.inpainting_model = models.resnet18(pretrained=False)
state_dict = torch.load('InpaintingModel_gen.pth')
self.inpainting_model.load_state_dict(state_dict)
# 定义修复不规则掩膜图像的网络结构
self.mask_conv = nn.Sequential(
nn.Conv2d(1, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, 3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, 3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, 3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 1, 3, padding=1),
)
def forward(self, x):
# 修复不规则掩膜图像
x = self.mask_conv(x)
# 使用预训练的模型编码上下文信息
x = self.inpainting_model(x)
return x
```
需要注意的是,在加载预训练模型权重时,需要保证预训练模型和当前模型的层数、结构和参数名称一致。如果预训练模型和当前模型的结构不一致,可以通过修改模型结构或者手动调整参数名称来解决。此外,在修复不规则掩膜图像时,需要使用合适的网络结构和超参数来获得较好的修复效果。