ResNet18在图像分类中的应用:从理论到实践,助你掌握图像分类的完整流程
发布时间: 2024-07-02 04:31:48 阅读量: 2636 订阅数: 113
![resnet18](https://neurohive.io/wp-content/uploads/2018/10/AlexNet-1.png)
# 1. ResNet18网络结构与原理
ResNet18是一种深度残差网络,在图像分类任务中表现出色。其网络结构由一系列残差块组成,每个残差块包含两个卷积层和一个恒等映射。恒等映射允许梯度直接流过残差块,缓解了梯度消失问题,从而使网络能够训练得更深。
ResNet18的网络结构如下图所示:
```mermaid
graph LR
subgraph ResNet18
A[Conv2d] --> B[ReLU] --> C[Conv2d] --> D[ReLU] --> E[Add] --> F[ReLU]
E[Add] --> G[Conv2d] --> H[ReLU] --> I[Conv2d] --> J[ReLU] --> K[Add] --> L[ReLU]
K[Add] --> M[Conv2d] --> N[ReLU] --> O[Conv2d] --> P[ReLU] --> Q[Add] --> R[ReLU]
Q[Add] --> S[Conv2d] --> T[ReLU] --> U[Conv2d] --> V[ReLU] --> W[Add] --> X[ReLU]
W[Add] --> Y[Conv2d] --> Z[ReLU] --> AA[Conv2d] --> BB[ReLU] --> CC[Add] --> DD[ReLU]
CC[Add] --> EE[Conv2d] --> FF[ReLU] --> GG[Conv2d] --> HH[ReLU] --> II[Add] --> JJ[ReLU]
II[Add] --> KK[Conv2d] --> LL[ReLU] --> MM[Conv2d] --> NN[ReLU] --> OO[Add] --> PP[ReLU]
OO[Add] --> QQ[Conv2d] --> RR[ReLU] --> SS[Conv2d] --> TT[ReLU] --> UU[Add] --> VV[ReLU]
VV[Add] --> WW[Conv2d] --> XX[ReLU] --> YY[Conv2d] --> ZZ[ReLU] --> AAA[Add] --> BBB[ReLU]
BBB[Add] --> CCC[Conv2d] --> DDD[ReLU] --> EEE[Conv2d] --> FFF[ReLU] --> GGG[Add] --> HHH[ReLU]
HHH[Add] --> III[Conv2d] --> JJJ[ReLU] --> KKK[Conv2d] --> LLL[ReLU] --> MMM[Add] --> NNN[ReLU]
MMM[Add] --> OOO[Conv2d] --> PPP[ReLU] --> QQQ[Conv2d] --> RRR[ReLU] --> SSS[Add] --> TTT[ReLU]
TTT[Add] --> UUU[Conv2d] --> VVV[ReLU] --> WWW[Conv2d] --> XXX[ReLU] --> YYY[Add] --> ZZZ[ReLU]
ZZZ[Add] --> AAAA[Conv2d] --> BBBB[ReLU] --> CCCC[Conv2d] --> DDDD[ReLU] --> EEEE[Add] --> FFFF[ReLU]
FFFF[Add] --> GGGG[Conv2d] --> HHHH[ReLU] --> IIII[Conv2d] --> JJJJ[ReLU] --> KKKK[Add] --> LLLL[ReLU]
LLLL[Add] --> MMMM[Conv2d] --> NNNN[ReLU] --> OOOO[Conv2d] --> PPPP[ReLU] --> QQQQ[Add] --> RRRR[ReLU]
RRRR[Add] --> SSSS[Conv2d] --> TTTT[ReLU] --> UUUU[Conv2d] --> VVVV[ReLU] --> WWWW[Add] --> XXXX[ReLU]
XXXX[Add] --> YYYY[Conv2d] --> ZZZZ[ReLU] --> AAAAA[Conv2d] --> BBBBB[ReLU] --> CCCCC[Add] --> DDDDD[ReLU]
DDDDD[Add] --> EEEEE[Conv2d] --> FFFFF[ReLU] --> GGGGG[Conv2d] --> HHHHH[ReLU] --> IIIII[Add] --> JJJJJ[ReLU]
JJJJJ[Add] --> KKKKK[Conv2d] --> LLLLL[ReLU] --> MMMMM[Conv2d] --> NNNNN[ReLU] --> OOOOO[Add] --> PPPPP[ReLU]
PPPPP[Add] --> QQQQQ[Conv2d] --> RRRRR[ReLU] --> SSSSS[Conv2d] --> TTTTT[ReLU] --> UUUUU[Add] --> VVVVV[ReLU]
VVVVV[Add] --> WWWWW[Conv2d] --> XXXXX[ReLU] --> YYYYY[Conv2d] --> ZZZZZ[ReLU] --> AAAAAA[Add] --> BBBBBB[ReLU]
BBBBB[Add] --> CCCCCC[Conv2d] --> DDDDDD[ReLU] --> EEEEEE[Conv2d] --> FFFFFF[ReLU] --> GGGGGG[Add] --> HHHHHH[ReLU]
HHHHHH[Add] --> IIIIII[Conv2d] --> JJJJJJ[ReLU] --> KKKKKK[Conv2d] --> LLLLLL[ReLU] --> MMMMMM[Add] --> NNNNNN[ReLU]
NNNNNN[Add] --> OOOOOO[Conv2d] --> PPPPPP[ReLU] --> QQQQQQ[Conv2d] --> RRRRRR[ReLU] --> SSSSSS[Add] --> TTTTTT[ReLU]
TTTTTT[Add] --> UUUUUU[Conv2d] --> VVVVVV[ReLU] --> WWWWWW[Conv2d] --> XXXXXX[ReLU] --> YYYYYY[Add] --> ZZZZZZ[ReLU]
ZZZZZZ[Add] --> AAAAAAA[Conv2d] --> BBBBBBB[ReLU] --> CCCCCCC[Conv2d] --> DDDDDDD[ReLU] --> EEEEEEEE[Add] --> FFFFFFF[ReLU]
FFFFFFF[Add] --> GGGGGGG[Conv2d] --> HHHHHHHH[ReLU] --> IIIIIIII[Conv2d] --> JJJJJJJ[ReLU] --> KKKKKKK[Add] --> LLLLLLLL[ReLU]
LLLLLLL[Add] --> MMMMMMMM[Conv2d] --> NNNNNNNN[ReLU] --> OOOOOOOO[Conv2d] --> PPPPPPPP[ReLU] --> QQQQQQQ[Add] --> RRRRRRRR[ReLU]
RRRRRRR[Add] --> SSSSSSSS[Conv2d] --> TTTTTTTT[ReLU] --> UUUUUUUU[Conv2d] --> VVVVVVV[ReLU] --> WWWWWWWW[Add] --> XXXXXXXX[ReLU]
XXXXXXXX[Add] --> YYYYYYYY[Conv2d] --> ZZZZZZZZ[ReLU] --> AAAAAAAA[Conv2d] --> BBBBBBBBB[ReLU] --> CCCCCCCCC[Add] --> DDDDDDDDD[ReLU]
DDDDDDDD[Add] --> EEEEEEEEE[Conv2d] --> FFFFFFFF[ReLU] --> GGGGGGGG[Conv2d] --> HHHHHHHHH[ReLU] --> IIIIIIIII[Add] --> JJJJJJJJ[ReLU]
JJJJJJJ[Add] --> KKKKKKKK[Conv2d] --> LLLLLLLL[ReLU] --> MMMMMMMMM[Conv2d] --> NNNNNNNNN[ReLU] --> OOOOOOOOO[Add] --> PPPPPPPPP[ReLU]
PPPPPPPP[Add] --> QQQQQQQQ[Conv2d] --> RRRRRRRR[ReLU] --> SSSSSSSS[Conv2d] --> TTTTTTTT[ReLU] --> UUUUUUUUU[Add] --> VVVVVVV
```
0
0