class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=2): super(ResNet, self).__init__() self.in_channels = 64 self.senet = senet(3) self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2) self.sppcab = SSPCAB(512) self.avgpool= SpatialPyramidPooling(output_sizes=[1]) self.fc = nn.Linear(512 * block.expansion, num_classes) def make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.senet(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.sppcab(out) out = self.avgpool(out) out = torch.flatten(out, 1) out = self.fc(out) return out。这个作用为单分类是不是少了些什么
时间: 2024-02-03 21:02:53 浏览: 151
resnet_v2_50_299.meta.rar
这个代码实现的确可以用于单分类任务,但是需要根据具体的数据集和任务进行一些修改和调整。
首先,需要将 `num_classes` 参数设置为 1,因为单分类任务只有一个类别。其次,需要根据数据集的特点和任务需求,选择合适的损失函数和评价指标。在二分类任务中,常用的损失函数包括二元交叉熵(BCE)和交叉熵(CE),评价指标包括精确度、召回率、F1 值等。最后,还需要根据数据集的大小和复杂度,调整模型的超参数,如学习率、批大小、训练轮数等。
另外,在这段代码中,`senet` 和 `SSPCAB` 都是自定义的模块,需要先导入相关代码或定义相关模块,才能正常运行。
阅读全文