pytorch ResNet网络
时间: 2023-10-21 13:14:41 浏览: 97
ResNet是一种深度残差网络,可以有效地训练非常深的神经网络。下面是一个使用PyTorch实现ResNet-50的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNet(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * 4, num_classes)
def _make_layer(self, planes, blocks, stride=1):
downsample = None
if stride != 1 or planes != 64:
downsample = nn.Sequential(
nn.Conv2d(64, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes),
)
layers = [ResidualBlock(64, planes, stride, downsample)]
for i in range(1, blocks):
layers.append(ResidualBlock(planes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class ResidualBlock(nn.Module):
def __init__(self, in_planes, planes, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
```
在这个示例代码中,我们定义了一个名为ResNet的类,它继承自PyTorch中的nn.Module类。ResNet类包含了ResNet-50的所有层,并且我们可以使用它来进行训练和推理。
ResNet类的构造函数中定义了各个层的结构,包括卷积层、池化层、批归一化层、全连接层等。其中,_make_layer函数用于创建残差块,ResidualBlock类定义了残差块的结构。
在ResNet类的forward函数中,我们按照ResNet的结构依次调用各个层,并将输出传递给下一层。最终,我们使用全局平均池化层和一个全连接层来输出分类结果。
这个实现示例可以处理3通道的图像,输出1000个类别的预测结果。如果需要处理其他类型的数据,可以根据实际情况进行修改。
阅读全文